我想在我的第一个Keras图层中调整输入图像的大小,所以我跟着this问题。解决方案工作得很好,直到我保存我的模型,然后尝试在另一个文件中使用它并抛出
NameError: name 'ktf' is not defined
我尝试添加:
from keras.backend import tf as ktf
打开模型的文件,但它仍然无法在模型中识别它。我需要做什么才能打开保存模型的程序识别tensorflow后端使用的函数?
更多细节......
train.py:
from keras.backend import tf as ktf
#Other stuff...
model = Sequential()
model.add(Lambda(lambda x: ktf.image.resize_images(x, (80, 160)), input_shape=(160, 320, 3))) #This line referenced in error
#Rest of model and training...
model.save('model.h5')
eval.py:
from keras.backend import tf as ktf
#Other stuff...
model = load_model('model.h5') #Error is here
错误讯息:
Using TensorFlow backend.
Traceback (most recent call last):
File "C:\program\eval.py", line 1
38, in <module>
model = load_model('model.h5')
File "C:\Program Files\Anaconda3\lib\site-packages\keras\models.py", line 246,
in load_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "C:\Program Files\Anaconda3\lib\site-packages\keras\models.py", line 314,
in model_from_config
return layer_module.deserialize(config, custom_objects=custom_objects)
File "C:\Program Files\Anaconda3\lib\site-packages\keras\layers\__init__.py",
line 54, in deserialize
printable_module_name='layer')
File "C:\Program Files\Anaconda3\lib\site-packages\keras\utils\generic_utils.p
y", line 140, in deserialize_keras_object
list(custom_objects.items())))
File "C:\Program Files\Anaconda3\lib\site-packages\keras\models.py", line 1217
, in from_config
model.add(layer)
File "C:\Program Files\Anaconda3\lib\site-packages\keras\models.py", line 443,
in add
layer(x)
File "C:\Program Files\Anaconda3\lib\site-packages\keras\engine\topology.py",
line 596, in __call__
output = self.call(inputs, **kwargs)
File "C:\Program Files\Anaconda3\lib\site-packages\keras\layers\core.py", line
652, in call
return self.function(inputs, **arguments)
File "train.py", line 189, in <lambda>
model.add(Lambda(lambda x: ktf.image.resize_images(x, (80, 160)), input_shape=(160, 320, 3)))
NameError: name 'ktf' is not defined
答案 0 :(得分:4)
解决方案是所描述的解决方法,即将后端导入为&#39; k&#39;:
train.py:
from keras import backend as K
#Other stuff...
model = Sequential()
model.add(Lambda(lambda x: K.tf.image.resize_images(x, (80, 160)), \
input_shape=(160, 320, 3))) #Resize 80x160x3
#Rest of model and training...
model.save('model.h5')
eval.py:
from keras import backend as K
#Other stuff...
model = load_model('model.h5') #Error is here
答案 1 :(得分:0)
我知道我迟到了三年半,但是如果您已经保存了模型并且无法更改生成代码,您可以像这样将丢失的对象传递给 load_model
:
from tf.keras import backend
from tf.keras.models import load_model
model = load_model("yourmodel.h5", custom_objects={"backend": backend})