我的pandas数据框中的一列表示我使用datetime计算的时间增量,然后导出到csv并读回到pandas数据框中。现在列的dtype是对象,而我希望它是timedelta,所以我可以在数据帧上执行groupby函数。下面是字符串的样子。谢谢!
0 days 00:00:57.416000
0 days 00:00:12.036000
0 days 16:46:23.127000
49 days 00:09:30.813000
50 days 00:39:31.306000
55 days 12:39:32.269000
-1 days +22:03:05.256000
更新,我最好尝试编写一个for循环迭代我的pandas数据帧中的特定列:
def delta(i):
days, timestamp = i.split(" days ")
timestamp = timestamp[:len(timestamp)-7]
t = datetime.datetime.strptime(timestamp,"%H:%M:%S") +
datetime.timedelta(days=int(days))
delta = datetime.timedelta(days=t.day, hours=t.hour,
minutes=t.minute, seconds=t.second)
delta.total_seconds()
data['diff'].map(delta)
答案 0 :(得分:3)
使用pd.to_timedelta
pd.to_timedelta(df.iloc[:, 0])
0 0 days 00:00:57.416000
1 0 days 00:00:12.036000
2 0 days 16:46:23.127000
3 49 days 00:09:30.813000
4 50 days 00:39:31.306000
5 55 days 12:39:32.269000
6 -1 days +22:03:05.256000
Name: 0, dtype: timedelta64[ns]
答案 1 :(得分:1)
你可以这样做,循环遍历CSV中的每个值代替stringdate:
stringdate = "2 days 00:00:57.416000"
days_v_hms = string1.split('days')
hms = days_v_hms[1].split(':')
dt = datetime.timedelta(days=int(days_v_hms[0]), hours=int(hms[0]), minutes=int(hms[1]), seconds=float(hms[2]))
干杯!
答案 2 :(得分:1)
import datetime
#Parse your string
days, timestamp = "55 days 12:39:32.269000".split(" days ")
timestamp = timestamp[:len(timestamp)-7]
#Generate datetime object
t = datetime.datetime.strptime(timestamp,"%H:%M:%S") + datetime.timedelta(days=int(days))
#Generate a timedelta
delta = datetime.timedelta(days=t.day, hours=t.hour, minutes=t.minute, seconds=t.second)
#Represent in Seconds
delta.total_seconds()