神经网络错误

时间:2017-06-17 10:37:43

标签: r neural-network supervised-learning

当试图训练神经网络时,我得到以下错误

  

神经元中的错误[[i]]%*%权重[[i]]:不一致的参数

nn.model <- neuralnet(formula = Attrition ~ Age + Attrition + BusinessTravel + Department + 
+                         DistanceFromHome + Education + EducationField + 
+                         EnvironmentSatisfaction + Gender + JobInvolvement + 
+                         JobLevel + JobRole  + JobSatisfaction + MaritalStatus + 
+                         MonthlyIncome + NumCompaniesWorked + OverTime + 
+                         PerformanceRating + RelationshipSatisfaction + StockOptionLevel + 
+                         TotalWorkingYears + WorkLifeBalance + YearsAtCompany + YearsInCurrentRole + 
+                         YearsWithCurrManager , data = TrainData, hidden = 40, 
+                         err.fct = "sse", linear.output = FALSE, 
+                         lifesign = "full",lifesign.step = 1,
+                         threshold = 0.1)

示例数据:

     Attrition           Age BusinessTravel   Department DistanceFromHome      Education EducationField
1781         2 -0.6485577827  -0.5899479808 2.3887402665   -0.88736416029  0.08503478649   2.4710614174
2852         2 -0.9770074637   2.4160261328 0.4937331474    0.83986126473  0.08503478649   0.3754112538
513          2 -1.0864906907  -0.5899479808 0.4937331474   -0.76399091564  1.06160616261   0.3754112538
1398         2  1.8695564380  -0.5899479808 0.4937331474   -0.02375144778 -0.89153658963  -1.0216888553
2128         2 -0.8675242367  -0.5899479808 0.4937331474   -0.27049793707 -1.86810796575   0.3754112538
2572         2 -0.5390745557  -0.5899479808 0.4937331474   -0.51724442636 -0.89153658963  -1.0216888553
     EnvironmentSatisfaction        Gender JobInvolvement       JobLevel       JobRole JobSatisfaction
1781           -1.5754182775  0.8163577092  -1.0259922033 -0.05777771663  2.3442756382   -1.5676398930
2852            0.2545816181  0.8163577092   0.3796075533 -0.96132285967 -0.6684127991    0.2461583303
513            -1.5754182775  0.8163577092  -1.0259922033 -0.96132285967 -0.6684127991    1.1530574420
1398           -1.5754182775 -1.2245365637   0.3796075533 -0.05777771663 -0.6684127991    0.2461583303
2128           -1.5754182775 -1.2245365637  -1.0259922033 -0.96132285967 -0.2380287366    1.1530574420
2572            1.1695815659 -1.2245365637  -1.0259922033 -0.05777771663 -0.6684127991   -0.6607407814
     MaritalStatus MonthlyIncome NumCompaniesWorked     OverTime PerformanceRating
1781  0.1332594155 -0.0197425573       0.1228398011 0.6281342689     -0.4261575208
2852 -1.2366101006 -0.9260223171      -0.6779340687 0.6281342689     -0.4261575208
513  -1.2366101006 -0.9470541258      -1.0783210036 0.6281342689     -0.4261575208
1398  0.1332594155 -0.7660531049       0.1228398011 0.6281342689     -0.4261575208
2128  1.5031289317 -0.8435946221       1.3240006059 0.6281342689     -0.4261575208
2572  0.1332594155 -0.1327619741       0.1228398011 0.6281342689     -0.4261575208
     RelationshipSatisfaction StockOptionLevel TotalWorkingYears WorkLifeBalance  YearsAtCompany
1781             1.1912353428    -0.9318558699     -0.2930270824    0.3380386595 -0.817594864371
2852             0.2661872953    -0.9318558699     -0.8072017302   -1.0776788035 -0.327837549528
513              1.1912353428    -0.9318558699     -0.8072017302    0.3380386595 -0.491089987809
1398             0.2661872953     1.4157501777     -0.2930270824   -1.0776788035 -0.491089987809
2128             0.2661872953     2.5895532015     -0.4215707444    0.3380386595 -0.491089987809
2572            -1.5839087997     0.2419471539      0.0926039034    0.3380386595 -0.001332672966
     YearsInCurrentRole YearsWithCurrManager
1781      -0.6153868953       -1.15573810597
2852      -0.3393360146       -0.03451387513
513       -0.6153868953       -0.87543204826
1398      -0.3393360146       -0.31481993284
2128      -0.3393360146       -0.31481993284
2572      -0.8914377760        0.24579218258

请有人建议我缺少什么。

感谢您的帮助。

最诚挚的问候。 Shaz

1 个答案:

答案 0 :(得分:0)

我的坏。这里有一个语法错误,正确的语法应该是:

nn.model <- neuralnet(formula = Attrition ~ Age + Attrition + BusinessTravel + Department + 
+                         DistanceFromHome + Education + EducationField + 
+                         EnvironmentSatisfaction + Gender + JobInvolvement + 
+                         JobLevel + JobRole  + JobSatisfaction + MaritalStatus + 
+                         MonthlyIncome + NumCompaniesWorked + OverTime + 
+                         PerformanceRating + RelationshipSatisfaction + StockOptionLevel + 
+                         TotalWorkingYears + WorkLifeBalance + YearsAtCompany + YearsInCurrentRole + 
+                         YearsWithCurrManager , data = TrainData, hidden = 40, 
+                         err.fct = "sse", linear.output = FALSE, 
+                         lifesign = "full",lifesign.step = 1,
+                         threshold = 0.1)

干杯。 Shaz