如何使用Vec支持HashMap

时间:2017-06-17 10:37:19

标签: rust

我尝试实现通用的A *树搜索算法。重要的部分是标有TODO的函数hucs

use std::collections::BinaryHeap;
use std::collections::HashMap;
use std::cmp::Ordering;

pub trait SearchTree<A> {
    fn available_actions(&self) -> Vec<A>;
    fn apply_action(&self, act: &A) -> Self;
}

pub trait CostSearchTree<A>: SearchTree<A> + Eq {
    fn action_cost(&self, act: &A) -> f64;
}

/// Node in the expanded search tree for uniform cost search with heuristic
struct HucsNode<A, T>
where
    T: CostSearchTree<A>,
{
    cost: f64,
    heuristic_cost: f64,
    parent_index: usize,
    action: Option<A>,
    tree: T,
}

impl<A, T> PartialEq for HucsNode<A, T>
where
    T: CostSearchTree<A>,
{
    fn eq(&self, other: &HucsNode<A, T>) -> bool {
        // Can be used for closed list checking if we just compare the trees
        return self.tree == other.tree;
    }
}

impl<A, T> Eq for HucsNode<A, T>
where
    T: CostSearchTree<A>,
{
}

impl<A, T> PartialOrd for HucsNode<A, T>
where
    T: CostSearchTree<A>,
{
    fn partial_cmp(&self, other: &HucsNode<A, T>) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<A, T> Ord for HucsNode<A, T>
where
    T: CostSearchTree<A>,
{
    fn cmp(&self, other: &HucsNode<A, T>) -> Ordering {
        let self_cost = self.cost + self.heuristic_cost;
        let other_cost = other.cost + other.heuristic_cost;

        // Flip for min-heap
        match other_cost.partial_cmp(&self_cost) {
            Some(order) => order,
            _ => Ordering::Equal,
        }
    }
}

/// Perform a uniform cost search with a monotonous heuristic function on a search tree.
/// Returns a sequence of actions if a state is found that satisfies the predicate or None if the search terminates before.
pub fn hucs<A, T: CostSearchTree<A> + Hash>(
    tree: T,
    predicate: &Fn(&T) -> bool,
    heuristic: &Fn(&T) -> f64,
) -> Option<Vec<A>> {

    let mut node_heap = BinaryHeap::new() as BinaryHeap<HucsNode<A, T>>;

    // Push the initial node onto the tree
    node_heap.push(HucsNode {
        action: None,
        parent_index: usize::max_value(),
        cost: 0.0,
        heuristic_cost: heuristic(&tree),
        tree: tree,
    });

    let mut old_nodes = Vec::new();
    let mut last_node_index = 0 as usize;

    'outer: while let Some(current_node) = node_heap.pop() {
        // Break borrows with scope so current_node can be moved out
        {
            if predicate(&current_node.tree) {
                return Some(form_action_sequence(current_node, old_nodes));
            }

            // Check if visited nodes already contains this tree with less cost
            // TODO: Time complexity is hardly ideal
            for old_node in old_nodes.iter() {
                if old_node.tree == current_node.tree && old_node.cost <= current_node.cost {
                    continue 'outer;
                }
            }

            let ref current_tree = current_node.tree;

            for action in current_tree.available_actions() {

                let action_cost = current_tree.action_cost(&action);
                let new_tree = current_tree.apply_action(&action);
                let new_cost = current_node.cost + action_cost;

                let new_node = HucsNode {
                    action: Some(action),
                    cost: new_cost,
                    parent_index: last_node_index,
                    heuristic_cost: heuristic(&new_tree),
                    tree: new_tree,
                };

                node_heap.push(new_node);
            }
        }

        old_nodes.push(current_node);
        last_node_index += 1;
    }

    return None;
}

/// Restore the sequence of actions that was used to get to this node by climbing the tree of expanded nodes
fn form_action_sequence<A, T: CostSearchTree<A>>(
    leaf: HucsNode<A, T>,
    mut older_nodes: Vec<HucsNode<A, T>>,
) -> Vec<A> {

    let mut action_vector = Vec::new();

    let mut current = leaf;

    while let Some(action) = current.action {
        action_vector.insert(0, action);

        // Safe to swap as nodes' parents are always before them
        current = older_nodes.swap_remove(current.parent_index);
    }

    return action_vector;
}

问题是通过扫描旧节点来查找当前节点是否在旧节点中需要太长时间。因此我想添加一个HashMap。因为我还需要能够通过索引访问旧节点以在最后形成解决方案动作序列,所以我还需要保留Vec。为了解决这个问题,我尝试添加一个我可以插入到HashMap中的包装器作为一个键,只需在Vec中查找其内容,如下所示:

use std::hash::Hash;
use std::hash::Hasher;

struct BackedHashWrapper<'a, T: 'a + Hash + Eq> {
    source: &'a Vec<T>,
    index: usize,
}

impl<A, T> Hash for HucsNode<A, T>
where
    T: CostSearchTree<A> + Hash,
{
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        self.tree.hash(state);
    }
}

impl<'a, T> Hash for BackedHashWrapper<'a, T>
where
    T: Eq + Hash,
{
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        self.source[self.index].hash(state);
    }
}

impl<'a, T> PartialEq for BackedHashWrapper<'a, T>
where
    T: Eq + Hash,
{
    fn eq(&self, other: &BackedHashWrapper<T>) -> bool {
        self.source[self.index] == other.source[other.index]
    }
}

impl<'a, T> Eq for BackedHashWrapper<'a, T>
where
    T: Eq + Hash,
{
}

我无法弄清楚如何在hucs方法中实现这一点,我尝试了以下只是为了向hashmap添加元素

...
let mut old_nodes = Vec::new();
let mut hash_map = HashMap::new();
...

    ...
    hash_map.insert(BackedHashWrapper {source: &old_nodes, index: last_node_index}, current_node.cost);
    old_nodes.push(current_node);
    last_node_index += 1;
    ...

但借用检查器不允许我创建这样的BackedHashWrapper,而源向量是可变的。很明显,我这样做完全是错误的,所以如何在不克隆树或任何动作的情况下实现这一目标?

1 个答案:

答案 0 :(得分:1)

我认为使用其他类型的后备存储(例如typed-arena crate中的TypedArena)会更容易。

但是从表面上看问题,你所处理的问题是由Rust borrowing rules引起的。也就是说,您不能对同一范围内的同一对象共享(&)和可变(&mut)引用或多个可变引用。

您的示例中的

hash_map包含对向量的共享引用,“冻结”它,这使得在hash_map在范围内时无法修改向量。

此问题的解决方案是interior mutability pattern

在您的情况下,您可以使用RefCell<Vec<T>>来修改向量,同时保留多个引用。

use std::cell::RefCell;

type RVec<T> = RefCell<Vec<T>>;

struct BackedHashWrapper<'a, T: 'a + Hash + Eq> {
    source: &'a RVec<T>,
    index: usize,
}

...
impl<'a, T> Hash for BackedHashWrapper<'a, T>
where
    T: Eq + Hash,
{
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        self.source.borrow()[self.index].hash(state);
    }
}
...
// Similar changes for Eq and PartialEq
...
let mut old_nodes: RVec<_> = RefCell::default();
let mut hash_map = HashMap::new();
...

    ...
    hash_map.insert(BackedHashWrapper {source: &old_nodes, index: last_node_index}, current_node.cost);
    old_nodes.borrow_mut().push(current_node);
    last_node_index += 1;
    ...

在其他地方可能需要几个borrow()borrow_mut()