我试图找到日期时间格式的pandas数据框中两列之间的时间差异。
以下是我的数据框中的一些数据以及我一直使用的代码。我已经三次检查这两个列dtypes是datetime64。
我的数据:
date_updated date_scored
2016-03-30 08:00:00.000 2016-03-30 08:00:57.416
2016-04-07 23:50:00.000 2016-04-07 23:50:12.036
我的代码:
data['date_updated'] = pd.to_datetime(data['date_updated'],
format='%Y-%m-%d %H:%M:%S')
data['date_scored'] = pd.to_datetime(data['date_scored'],
format='%Y-%m-%d %H:%M:%S')
data['Diff'] = data['date_updated'] - data['date_scored']
我收到的错误讯息:
TypeError: data type "datetime" not understood
任何帮助将不胜感激,谢谢!
我的解决方案:
for i in raw_data[:10]:
scored = i.date_scored
scored_date = pd.to_datetime(scored, format='%Y-%m-%d %H:%M:%S')
if type(scored_date) == "NoneType":
pass
elif scored_date.year >= 2016:
extracted = i.date_extracted
extracted = pd.to_datetime(extracted, format='%Y-%m-%d %H:%M:%S')
bank = i.bank.name
diff = scored - extracted
datum = [str(bank), str(extracted), str(scored), str(diff)]
data.append(datum)
else:
pass
答案 0 :(得分:17)
我使用上面的语法遇到了同样的错误(虽然在另一台机器上工作):
data['Diff'] = data['date_updated'] - data['date_scored']
它在我的新机器上工作:
data['Diff'] = data['date_updated'].subtract(data['date_scored'])
答案 1 :(得分:1)
它就像一个魅力。您甚至可以简化代码,因为to_datetime
足够智能,可以为您猜测格式。
import io
import pandas as pd
# Paste the text by using of triple-quotes to span String literals on multiple lines
zz = """date_updated,date_scored
2016-03-30 08:00:00.000, 2016-03-30 08:00:57.416
2016-04-07 23:50:00.000, 2016-04-07 23:50:12.036"""
data = pd.read_table(io.StringIO(zz), delim_whitespace=False, delimiter=',')
data['date_updated'] = pd.to_datetime(data['date_updated'])
data['date_scored'] = pd.to_datetime(data['date_scored'])
data['Diff'] = data['date_updated'] - data['date_scored']
print(data)
# date_updated date_scored Diff
# 0 2016-03-30 08:00:00 2016-03-30 08:00:57.416 -1 days +23:59:02.584000
# 1 2016-04-07 23:50:00 2016-04-07 23:50:12.036 -1 days +23:59:47.964000
答案 2 :(得分:1)
You need to update pandas. I've just ran into the same issue with an old code that used to run without issues. After updating pandas (0.18.1-np111py35_0) to a newer version (0.20.2-np113py35_0) the issue was resolved.