with tf.Session() as sess:
out = open('output.csv', 'a')
for image_path in glob.glob(folder_path+'/*'):
# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
#print("%s\t%s\t%s\t%s\t%s\t%s\n" % (image_path,predictions[0][1],predictions[0][0],predictions[0][2], predictions[0][3],predictions[0][4]))
for i in predictions:
predictions= pd.DataFrame([image_path,i[0][1],i[0][0],i[0][2], i[0][3],i[0][4]], columns = ['predictions']).to_csv('prediction.csv')
#f = open('/tf_files/testinnggg', 'w')
#for row in predictions:
# f.write(row[0])
# f.close()
#test = []
#test.append([predictions[0][1],predictions[0][0],predictions[0][2], predictions[0][3],predictions[0][4]])
#THIS ACTUALLY WORKS, I see in my terminal "/tf_files/tested/pic1.jpg 0.00442768 0.995572"
#np.savetxt('testinnggg', test, delimiter = ',')#,[predictions[0][0],predictions[0][2],predictions[0][3],predictions[0][4],delimiter = ',')
#out.write("%s\t%s\t%s\n" % (image_path,predictions[0][1],predictions[0][0]))
#This does not work, because output.csv is not modified
out.close()
当使用pandas选项保存预测时,唯一保存的预测是最终文件,我认为它会覆盖以前的预测。关于如何在循环中获得所有预测的任何建议。
谢谢