git clone --recursive https://github.com/dmlc/xgboost
cd xgboost; make -j4
我使用官方文档在ubuntu上安装xgboost。没有错误,但是当我启动我的ipython笔记本是anaconda环境时,导入xgboost显示错误,这不是模块。
如何在我的anaconda python环境中导入xgboost?
我是否需要在ubuntu中修改一些环境变量?
答案 0 :(得分:0)
使用Spyder时,同样的事情发生在我身上。 我可以使用终端导入它(带有弃用警告),即:
pinaki@Excalibur:~$ python
Python 3.6.1 |Anaconda custom (64-bit)| (default, May 11 2017, 13:09:58)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from xgboost import XGBClassifier
/home/pinaki/anaconda3/lib/python3.6/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning)
>>>
但是在尝试使用Spyder运行相同代码时出现以下错误:
from xgboost import XGBClassifier
Traceback (most recent call last):
File "<ipython-input-1-9b31cfdb821c>", line 1, in <module>
from xgboost import XGBClassifier
File "/media/pinaki/MyStuff/Work/Machine Learning A-Z Template Folder/Part 10 - Model Selection & Boosting/Section 49 - XGBoost/XGBoost/xgboost.py", line 30, in <module>
from xgboost import XGBClassifier
ImportError: cannot import name 'XGBClassifier'
和pip install xgboost返回以下输出:
Requirement already satisfied: xgboost in /home/pinaki/xgboost/python-package
Requirement already satisfied: numpy in /home/pinaki/anaconda3/lib/python3.6/site-packages (from xgboost)
Requirement already satisfied: scipy in /home/pinaki/anaconda3/lib/python3.6/site-packages (from xgboost)
答案 1 :(得分:0)
对我来说,通过将工作文件从xgboost.py重命名为其他内容来解决问题。
答案 2 :(得分:0)
You have to go to python-package
folder inside xgboost
folder and run setup.py
as well.
After
git clone --recursive https://github.com/dmlc/xgboost
cd xgboost; make -j4
Run
cd python-package; sudo python setup.py install
答案 3 :(得分:0)
答案 4 :(得分:0)
使用此 conda 命令:
conda install -c conda-forge xgboost
或 pip :
pip install xgboost