如何使用Scala的DataFrame比较表中的每一列

时间:2017-06-16 06:26:19

标签: scala apache-spark spark-dataframe

有两张桌子;一个是ID表1,另一个是属性表2.

表1

id table 1

表2

attribute table 2

如果表1中同一行的ID具有相同的属性,那么我们得到数字1,否则我们得到0.最后,我们得到结果表3.

表3

result table 3

例如,id1和id2具有不同的颜色和大小,因此id1和id2行(表3中的第2行)具有“id1 id2 0 0”;

id1和id3具有相同的颜色和不同的大小,因此id1和id3行(表3中的第3行)具有“id1 id3 1 0”;

相同属性--- 1 不同的属性--- 0

如何使用Scala数据帧获得结果表3?

2 个答案:

答案 0 :(得分:3)

这应该可以解决问题

import spark.implicits._

val t1 = List(
  ("id1","id2"),
  ("id1","id3"),
  ("id2","id3")
).toDF("id_x", "id_y")

val t2 = List(
  ("id1","blue","m"),
  ("id2","red","s"),
  ("id3","blue","s")
).toDF("id", "color", "size")

t1
  .join(t2.as("x"), $"id_x" === $"x.id", "inner")
  .join(t2.as("y"), $"id_y" === $"y.id", "inner")
  .select(
    'id_x,
    'id_y,
    when($"x.color" === $"y.color",1).otherwise(0).alias("color").cast(IntegerType),
    when($"x.size" === $"y.size",1).otherwise(0).alias("size").cast(IntegerType)
  )
  .show()

导致:

+----+----+-----+----+
|id_x|id_y|color|size|
+----+----+-----+----+
| id1| id2|    0|   0|
| id1| id3|    1|   0|
| id2| id3|    0|   1|
+----+----+-----+----+

答案 1 :(得分:2)

以下是使用UDF执行此操作的方法,它可以帮助您了解代码的重复次数并最小化以提高性能

import spark.implicits._

val df1 = spark.sparkContext.parallelize(Seq(
    ("id1", "id2"),
    ("id1","id3"),
    ("id2","id3")
  )).toDF("idA", "idB")

val df2 = spark.sparkContext.parallelize(Seq(
  ("id1", "blue", "m"),
  ("id2", "red", "s"),
  ("id3", "blue", "s")
)).toDF("id", "color", "size")

val firstJoin = df1.join(df2, df1("idA") === df2("id"), "inner")
  .withColumnRenamed("color", "colorA")
  .withColumnRenamed("size", "sizeA")
  .withColumnRenamed("id", "idx")

val secondJoin = firstJoin.join(df2, firstJoin("idB") === df2("id"), "inner")

val check = udf((v1: String, v2:String ) => {
  if (v1.equalsIgnoreCase(v2)) 1 else 0
})

val result = secondJoin
  .withColumn("color", check(col("colorA"), col("color")))
  .withColumn("size", check(col("sizeA"), col("size")))

val finalResult = result.select("idA", "idB", "color", "size")

希望这有帮助!