我是TFLearn的新手,并尝试创建一个简单的添加程序。
输入为2个值,输出为一个值,即输入的总和。我得到的错误是"ValueError: Cannot feed value of shape (100,) for Tensor 'TargetsData/Y:0', which has shape '(?, 1)"
似乎形状/批量大小在代码中匹配,所以我不知道列车/测试数据的生成方式是问题,或者如果NN创建代码错误。
这是代码:
import numpy as np
import tflearn
def generate_answers(data):
answers = []
for row in data:
answers.append(sum(row))
return np.array(answers).astype(float)
train_data_count = 1000
test_data_count = 100
net = tflearn.input_data(shape=(None, 2))
net = tflearn.fully_connected(net, 100)
net = tflearn.fully_connected(net, 100)
net = tflearn.fully_connected(net, 1, activation="linear")
net = tflearn.regression(net, optimizer='sgd', loss='mean_square', metric='R2', learning_rate=0.1)
model = tflearn.DNN(net)
train_data = np.random.randint(500, size=(train_data_count, 2)).astype(float)
train_answers = generate_answers(train_data)
print(train_data.shape)
print(train_answers.shape)
model.fit(train_data, train_answers, n_epoch=100, batch_size=100, show_metric=True)
test_data = np.random.randint(500, size=(test_data_count, 2)).astype(float)
test_answers = generate_answers(test_data)
predictions = model.predict(test_data)
count = 0
for i in range(len(predictions)):
if test_answers[i] == predictions[i]:
count += 1
print(count, "/", len(predictions))
感谢任何帮助。
答案 0 :(得分:0)
事实证明,在回归之前添加net = tflearn.reshape(net, [-1])
有助于解决该问题。该程序仍有一些错误,但至少已经解决了。