无法使用Scala在Apache Spark中执行用户定义的函数

时间:2017-06-15 14:35:48

标签: scala apache-spark

我有以下数据框:

+---------------+-----------+-------------+--------+--------+--------+--------+------+-----+
|   time_stamp_0|sender_ip_1|receiver_ip_2|s_port_3|r_port_4|acknum_5|winnum_6| len_7|count|
+---------------+-----------+-------------+--------+--------+--------+--------+------+-----+
|06:36:16.293711|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58| 65161|  130|
|06:36:16.293729|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58| 65913|  130|
|06:36:16.293743|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|131073|  130|
|06:36:16.293765|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|196233|  130|
|06:36:16.293783|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|196985|  130|
|06:36:16.293798|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|262145|  130|
|06:36:16.293820|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|327305|  130|
|06:36:16.293837|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|328057|  130|
|06:36:16.293851|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|393217|  130|
|06:36:16.293873|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|458377|  130|
|06:36:16.293890|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|459129|  130|
|06:36:16.293904|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|524289|  130|
|06:36:16.293926|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|589449|  130|
|06:36:16.293942|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|590201|  130|
|06:36:16.293956|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|655361|  130|
|06:36:16.293977|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|720521|  130|
|06:36:16.293994|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|721273|  130|
|06:36:16.294007|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|786433|  130|
|06:36:16.294028|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|851593|  130|
|06:36:16.294045|   10.0.0.1|     10.0.0.2|   55518|    5001|       0|      58|852345|  130|
+---------------+-----------+-------------+--------+--------+--------+--------+------+-----+
only showing top 20 rows

我必须向dataframe添加功能和标签以预测计数值。但是当我运行代码时,我会看到以下错误:

Failed to execute user defined function(anonfun$15: (int, int, string, string, int, int, int, int, int) => vector)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)

我还cast(IntegerType)我的所有功能,但又发生了错误。这是我的代码:

val Frist_Dataframe = sqlContext.createDataFrame(Row_Dstream_Train, customSchema)

       val toVec9 = udf[Vector, Int, Int, String, String, Int, Int, Int, Int, Int] { (a, b, c, d, e, f, g, h, i) =>
              val e3 = c match {
                case "10.0.0.1" => 1
                case "10.0.0.2" => 2
                case "10.0.0.3" => 3
              }

              val e4 = d match {
                case "10.0.0.1" => 1
                case "10.0.0.2" => 2
                case "10.0.0.3" => 3
              }
              Vectors.dense(a, b, e3, e4, e, f, g, h, i)
            }

            val final_df = Dataframe.withColumn(
              "features",
              toVec9(
                // casting into Timestamp to parse the string, and then into Int
                $"time_stamp_0".cast(TimestampType).cast(IntegerType),
                $"count".cast(IntegerType),
                $"sender_ip_1",
                $"receiver_ip_2",
                $"s_port_3".cast(IntegerType),
                $"r_port_4".cast(IntegerType),
                $"acknum_5".cast(IntegerType),
                $"winnum_6".cast(IntegerType),
                $"len_7".cast(IntegerType)
              )
            ).withColumn("label", (Dataframe("count"))).select("features", "label")

final_df.show()

val trainingTest = final_df.randomSplit(Array(0.8, 0.2))
val TrainingDF = trainingTest(0).toDF()
val TestingDF=trainingTest(1).toDF()
TrainingDF.show()
TestingDF.show()

我的依赖关系也是:

libraryDependencies ++= Seq(
  "co.theasi" %% "plotly" % "0.2.0",
  "org.apache.spark" %% "spark-core" % "2.1.1",
  "org.apache.spark" %% "spark-sql" % "2.1.1",
  "org.apache.spark" %% "spark-hive" % "2.1.1",
  "org.apache.spark" %% "spark-streaming" % "2.1.1",
  "org.apache.spark" %% "spark-mllib" % "2.1.1"
)

最有趣的一点是,如果我在代码的最后部分将所有cast(IntegerType)更改为cast(TimestampType).cast(IntegerType),则错误消失,输出将如下所示:

+--------+-----+
|features|label|
+--------+-----+
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
|    null|  130|
+--------+-----+

更新:应用@Ramesh Maharjan解决方案后,我的数据帧的结果运行良好但是,每当我尝试将我的final_df数据帧拆分为训练并测试结果时,如下所示,我仍然有同样存在空行的问题。

+--------------------+-----+
|            features|label|
+--------------------+-----+
|                null|  130|
|                null|  130|
|                null|  130|
|                null|  130|
|                null|  130|
|                null|  130|
|                null|  130|
|                null|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
|[1.497587776E9,13...|  130|
+--------------------+-----+

你能帮助我吗?

2 个答案:

答案 0 :(得分:3)

我没有在您的问题代码中看到count column生成。除了count专栏@ Shankar的回答应该可以得到你想要的结果。

以下错误是由于udf函数的错误定义导致@Shankar在答案中纠正错误。

Failed to execute user defined function(anonfun$15: (int, int, string, string, int, int, int, int, int) => vector)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)

以下错误是version spark-mllib libraryspark-core libraryspark-sql library不匹配造成的。它们都应该是相同的版本。

error: Caused by: org.apache.spark.SparkException: Failed to execute user defined function(anonfun$15: (int, int, string, string, int, int, int, int, int) => vector) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$Gen‌​eratedIterator.proce‌​ssNext(Unknown Source) 

我希望解释清楚,希望很快就能解决你的问题。

<强>被修改

你还没有像@Shankar所建议的那样改变udf功能。我也可以添加.trim

val toVec9 = udf ((a: Int, b: Int, c: String, d: String, e: Int, f: Int, g: Int, h: Int, i: Int) =>
  {
  val e3 = c.trim match {
    case "10.0.0.1" => 1
    case "10.0.0.2" => 2
    case "10.0.0.3" => 3
  }
  val e4 = d.trim match {
    case "10.0.0.1" => 1
    case "10.0.0.2" => 2
    case "10.0.0.3" => 3
  }
  Vectors.dense(a, b, e3, e4, e, f, g, h, i)
})

在查看您的依赖项时,您正在使用%%告诉sbt在您的系统中下载dependencies打包的scala版本。这应该没问题,但是由于你仍然遇到错误,我想将dependencies更改为

libraryDependencies ++= Seq(
  "co.theasi" %% "plotly" % "0.2.0",
  "org.apache.spark" % "spark-core_2.11" % "2.1.1",
  "org.apache.spark" % "spark-sql_2.11" % "2.1.1",
  "org.apache.spark" %% "spark-hive" % "2.1.1",
  "org.apache.spark" % "spark-streaming_2.11" % "2.1.1",
  "org.apache.spark" % "spark-mllib_2.11" % "2.1.1"

)

答案 1 :(得分:0)

我认为这是你创建udf的方式

val toVec9 = udf ((a: Int, b: Int, c: String, d: String, e: Int, f: Int, g: Int, h: Int, i: Int) =>
{
  val e3 = c match {
    case "10.0.0.1" => 1
    case "10.0.0.2" => 2
    case "10.0.0.3" => 3
  }

  val e4 = d match {
    case "10.0.0.1" => 1
    case "10.0.0.2" => 2
    case "10.0.0.3" => 3
  }
  Vectors.dense(a, b, e3, e4, e, f, g, h, i)

})

并将其用作

val final_df = Dataframe.withColumn(
              "features",
              toVec9(
                // casting into Timestamp to parse the string, and then into Int
                $"time_stamp_0".cast(TimestampType).cast(IntegerType),
                $"count".cast(IntegerType),
                $"sender_ip_1",
                $"receiver_ip_2",
                $"s_port_3".cast(IntegerType),
                $"r_port_4".cast(IntegerType),
                $"acknum_5".cast(IntegerType),
                $"winnum_6".cast(IntegerType),
                $"len_7".cast(IntegerType)
              )
            ).withColumn("label", (Dataframe("count"))).select("features", "label")

希望这有帮助!