当我想使用tf.train.string_input_producer
加载2个时期的数据时,我使用了
filename_queue = tf.train.string_input_producer(filenames=['data.csv'], num_epochs=2, shuffle=True)
col1_batch, col2_batch, col3_batch = tf.train.shuffle_batch([col1, col2, col3], batch_size=batch_size, capacity=capacity,\min_after_dequeue=min_after_dequeue, allow_smaller_final_batch=True)
但后来我发现这个操作并没有产生我想要的东西。
它只能在data.csv
中生成每个样本2次,但生成的顺序并不清楚。例如,data.csv
[[1]
[2]
[3]]
它会产生(每个样本只出现2次,但顺序是可选的)
[1]
[1]
[3]
[2]
[2]
[3]
但我想要的是(每个时代都是分开的,在每个时代都是随机播放)
(epoch 1:)
[1]
[2]
[3]
(epoch 2:)
[1]
[3]
[2]
另外,如何知道1个纪元何时完成?有一些标志变量吗?谢谢!
我的代码在这里。
import tensorflow as tf
def read_my_file_format(filename_queue):
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
record_defaults = [['1'], ['1'], ['1']]
col1, col2, col3 = tf.decode_csv(value, record_defaults=record_defaults, field_delim='-')
# col1 = list(map(int, col1.split(',')))
# col2 = list(map(int, col2.split(',')))
return col1, col2, col3
def input_pipeline(filenames, batch_size, num_epochs=1):
filename_queue = tf.train.string_input_producer(
filenames, num_epochs=num_epochs, shuffle=True)
col1,col2,col3 = read_my_file_format(filename_queue)
min_after_dequeue = 10
capacity = min_after_dequeue + 3 * batch_size
col1_batch, col2_batch, col3_batch = tf.train.shuffle_batch(
[col1, col2, col3], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue, allow_smaller_final_batch=True)
return col1_batch, col2_batch, col3_batch
filenames=['1.txt']
batch_size = 3
num_epochs = 1
a1,a2,a3=input_pipeline(filenames, batch_size, num_epochs)
with tf.Session() as sess:
sess.run(tf.local_variables_initializer())
# start populating filename queue
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop():
a, b, c = sess.run([a1, a2, a3])
print(a, b, c)
except tf.errors.OutOfRangeError:
print('Done training, epoch reached')
finally:
coord.request_stop()
coord.join(threads)
我的数据就像
1,2-3,4-A
7,8-9,10-B
12,13-14,15-C
17,18-19,20-D
22,23-24,25-E
27,28-29,30-F
32,33-34,35-G
37,38-39,40-H
答案 0 :(得分:10)
作为Nicolas observes,tf.train.string_input_producer()
API无法检测到达纪元的结尾的时间;相反,它将所有时期连接成一个长批。出于这个原因,我们最近添加了(在TensorFlow 1.2中)tf.contrib.data
API,这使得表达更复杂的流水线成为可能,包括您的用例。
以下代码段显示了如何使用tf.contrib.data
编写程序:
import tensorflow as tf
def input_pipeline(filenames, batch_size):
# Define a `tf.contrib.data.Dataset` for iterating over one epoch of the data.
dataset = (tf.contrib.data.TextLineDataset(filenames)
.map(lambda line: tf.decode_csv(
line, record_defaults=[['1'], ['1'], ['1']], field_delim='-'))
.shuffle(buffer_size=10) # Equivalent to min_after_dequeue=10.
.batch(batch_size))
# Return an *initializable* iterator over the dataset, which will allow us to
# re-initialize it at the beginning of each epoch.
return dataset.make_initializable_iterator()
filenames=['1.txt']
batch_size = 3
num_epochs = 10
iterator = input_pipeline(filenames, batch_size)
# `a1`, `a2`, and `a3` represent the next element to be retrieved from the iterator.
a1, a2, a3 = iterator.get_next()
with tf.Session() as sess:
for _ in range(num_epochs):
# Resets the iterator at the beginning of an epoch.
sess.run(iterator.initializer)
try:
while True:
a, b, c = sess.run([a1, a2, a3])
print(a, b, c)
except tf.errors.OutOfRangeError:
# This will be raised when you reach the end of an epoch (i.e. the
# iterator has no more elements).
pass
# Perform any end-of-epoch computation here.
print('Done training, epoch reached')
答案 1 :(得分:2)
您可能希望查看此问题answer。
短篇小说是:
如果num_epochs
> 1,所有数据都在同一时间排队,并且独立于纪元而结束,
因此您无法监控哪个时代正在出列。
您可以做的是引用的答案中的第一个建议,即使用num_epochs
== 1,并在每次运行中重新初始化本地队列变量(显然不是模型变量)。
init_queue = tf.variables_initializer(tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope='input_producer'))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
for e in range(num_epochs):
with tf.Session() as sess:
sess.run(init_queue) # reinitialize the local variables in the input_producer scope
# start populating filename queue
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop():
a, b, c = sess.run([a1, a2, a3])
print(a, b, c)
except tf.errors.OutOfRangeError:
print('Done training, epoch reached')
finally:
coord.request_stop()
coord.join(threads)