答案 0 :(得分:7)
快速解决方案是修改image.c文件以打印出边界框信息:
...
if(bot > im.h-1) bot = im.h-1;
// Print bounding box values
printf("Bounding Box: Left=%d, Top=%d, Right=%d, Bottom=%d\n", left, top, right, bot);
draw_box_width(im, left, top, right, bot, width, red, green, blue);
...
答案 1 :(得分:3)
有一个很好的小python(2 - 但只需要很少的修改3. [只需将打印和字符串更改为主]中的二进制字符串)程序,您可以在主仓库中使用{{ 3}}
请注意!给定的坐标是中点,宽度和高度。
答案 2 :(得分:1)
如果要在python
中实现此功能,那么我在here中创建了一个小的python
包装器。按照ReadMe
文件进行安装。它将非常容易安装。
此后,请遵循此example code来了解如何检测对象。
如果您检测到的是det
top_left_x = det.bbox.x
top_left_y = det.bbox.y
width = det.bbox.w
height = det.bbox.h
如果需要,可以通过以下方式获得中点:
mid_x, mid_y = det.bbox.get_point(pyyolo.BBox.Location.MID)
希望这会有所帮助。
答案 3 :(得分:1)
对于Windows中的python用户:
首先...,进行一些设置工作:
在环境路径中设置darknet文件夹的python路径:
PYTHONPATH = 'YOUR DARKNET FOLDER'
通过添加PYTHONPATH到路径值:
%PYTHONPATH%
coco.data
文件夹变量更改为cfg folder
文件夹,来对names
中的{li> 编辑文件coco.names
:
names = D:/core/darknetAB/data/coco.names
使用此设置,您可以从任何文件夹中调用darknet.py(来自alexeyAB\darknet存储库)作为python模块。
开始编写脚本:
from darknet import performDetect as scan #calling 'performDetect' function from darknet.py
def detect(str):
''' this script if you want only want get the coord '''
picpath = str
cfg='D:/core/darknetAB/cfg/yolov3.cfg' #change this if you want use different config
coco='D:/core/darknetAB/cfg/coco.data' #you can change this too
data='D:/core/darknetAB/yolov3.weights' #and this, can be change by you
test = scan(imagePath=picpath, thresh=0.25, configPath=cfg, weightPath=data, metaPath=coco, showImage=False, makeImageOnly=False, initOnly=False) #default format, i prefer only call the result not to produce image to get more performance
#until here you will get some data in default mode from alexeyAB, as explain in module.
#try to: help(scan), explain about the result format of process is: [(item_name, convidence_rate (x_center_image, y_center_image, width_size_box, height_size_of_box))],
#to change it with generally used form, like PIL/opencv, do like this below (still in detect function that we create):
newdata = []
if len(test) >=2:
for x in test:
item, confidence_rate, imagedata = x
x1, y1, w_size, h_size = imagedata
x_start = round(x1 - (weight_size/2))
y_start = round(y1 - (height_size/2))
x_end = round(x_start + w_size)
y_end = round(y_start + h_size)
data = (item, confidence_rate, (x_start, y_start, x_end, y_end), w_size, h_size)
newdata.append(data)
elif len(test) == 1:
item, confidence_rate, imagedata = test
x1, y1, w_size, h_size = imagedata
x_start = round(x1 - (w_size/2))
y_start = round(y1 - (h_size/2))
x_end = round(x_start + w_size)
y_end = round(y_start + h_size)
data = (item, confidence_rate, (x_start, y_start, x_end, y_end), w_size, h_size)
newdata.append(data)
else:
newdata = False
return newdata
如何使用它:
table = 'D:/test/image/test1.jpg'
checking = detect(table)'
获取坐标:
如果只有1个结果:
x1, y1, x2, y2 = checking[2]
如果结果很多:
for x in checking:
item = x[0]
x1, y1, x2, y2 = x[2]
print(item)
print(x1, y1, x2, y2)
答案 4 :(得分:0)
灵感来自上述@Wahyu的答案。几乎没有更改,修改和错误修复,并且已通过单对象检测和多对象检测进行了测试。
# calling 'performDetect' function from darknet.py
from darknet import performDetect as scan
import math
def detect(img_path):
''' this script if you want only want get the coord '''
picpath = img_path
# change this if you want use different config
cfg = '/home/saggi/Documents/saggi/prabin/darknet/cfg/yolo-obj.cfg'
coco = '/home/saggi/Documents/saggi/prabin/darknet/obj.data' # you can change this too
# and this, can be change by you
data = '/home/saggi/Documents/saggi/prabin/darknet/backup/yolo-obj_last.weights'
test = scan(imagePath=picpath, thresh=0.25, configPath=cfg, weightPath=data, metaPath=coco, showImage=False, makeImageOnly=False,
initOnly=False) # default format, i prefer only call the result not to produce image to get more performance
# until here you will get some data in default mode from alexeyAB, as explain in module.
# try to: help(scan), explain about the result format of process is: [(item_name, convidence_rate (x_center_image, y_center_image, width_size_box, height_size_of_box))],
# to change it with generally used form, like PIL/opencv, do like this below (still in detect function that we create):
newdata = []
# For multiple Detection
if len(test) >= 2:
for x in test:
item, confidence_rate, imagedata = x
x1, y1, w_size, h_size = imagedata
x_start = round(x1 - (w_size/2))
y_start = round(y1 - (h_size/2))
x_end = round(x_start + w_size)
y_end = round(y_start + h_size)
data = (item, confidence_rate,
(x_start, y_start, x_end, y_end), (w_size, h_size))
newdata.append(data)
# For Single Detection
elif len(test) == 1:
item, confidence_rate, imagedata = test[0]
x1, y1, w_size, h_size = imagedata
x_start = round(x1 - (w_size/2))
y_start = round(y1 - (h_size/2))
x_end = round(x_start + w_size)
y_end = round(y_start + h_size)
data = (item, confidence_rate,
(x_start, y_start, x_end, y_end), (w_size, h_size))
newdata.append(data)
else:
newdata = False
return newdata
if __name__ == "__main__":
# Multiple detection image test
# table = '/home/saggi/Documents/saggi/prabin/darknet/data/26.jpg'
# Single detection image test
table = '/home/saggi/Documents/saggi/prabin/darknet/data/1.jpg'
detections = detect(table)
# Multiple detection
if len(detections) > 1:
for detection in detections:
print(' ')
print('========================================================')
print(' ')
print('All Parameter of Detection: ', detection)
print(' ')
print('========================================================')
print(' ')
print('Detected label: ', detection[0])
print(' ')
print('========================================================')
print(' ')
print('Detected object Confidence: ', detection[1])
x1, y1, x2, y2 = detection[2]
print(' ')
print('========================================================')
print(' ')
print(
'Detected object top left and bottom right cordinates (x1,y1,x2,y2): x1, y1, x2, y2')
print('x1: ', x1)
print('y1: ', y1)
print('x2: ', x2)
print('y2: ', y2)
print(' ')
print('========================================================')
print(' ')
print('Detected object width and height: ', detection[3])
b_width, b_height = detection[3]
print('Weidth of bounding box: ', math.ceil(b_width))
print('Height of bounding box: ', math.ceil(b_height))
print(' ')
print('========================================================')
# Single detection
else:
print(' ')
print('========================================================')
print(' ')
print('All Parameter of Detection: ', detections)
print(' ')
print('========================================================')
print(' ')
print('Detected label: ', detections[0][0])
print(' ')
print('========================================================')
print(' ')
print('Detected object Confidence: ', detections[0][1])
x1, y1, x2, y2 = detections[0][2]
print(' ')
print('========================================================')
print(' ')
print(
'Detected object top left and bottom right cordinates (x1,y1,x2,y2): x1, y1, x2, y2')
print('x1: ', x1)
print('y1: ', y1)
print('x2: ', x2)
print('y2: ', y2)
print(' ')
print('========================================================')
print(' ')
print('Detected object width and height: ', detections[0][3])
b_width, b_height = detections[0][3]
print('Weidth of bounding box: ', math.ceil(b_width))
print('Height of bounding box: ', math.ceil(b_height))
print(' ')
print('========================================================')
# Single detections output:
# test value [('movie_name', 0.9223029017448425, (206.79859924316406, 245.4672393798828, 384.83673095703125, 72.8630142211914))]
# Multiple detections output:
# test value [('movie_name', 0.9225175976753235, (92.47076416015625, 224.9121551513672, 147.2491912841797, 42.063255310058594)),
# ('movie_name', 0.4900225102901459, (90.5261459350586, 12.4061279296875, 182.5990447998047, 21.261077880859375))]
答案 5 :(得分:0)
如果接受的答案对您不起作用,这可能是因为您使用的是 AlexyAB's 暗网模型而不是 pjreddie's 暗网模型。
您只需转到 src 文件夹中的 image_opencv.cpp 文件并取消注释以下部分:
...
//int b_x_center = (left + right) / 2;
//int b_y_center = (top + bot) / 2;
//int b_width = right - left;
//int b_height = bot - top;
//sprintf(labelstr, "%d x %d - w: %d, h: %d", b_x_center, b_y_center, b_width, b_height);
这将打印 Bbox 中心坐标以及 Bbox 的宽度和高度。进行更改后,请确保在运行 YOLO 之前再次make
暗网。