我构建了一个简单的线性回归模型,并使用该模型生成了一些预测值。但是,我更感兴趣的是在图表上将其可视化,但我不知道如何添加图例以将原始 mpg 值突出显示为“黑色”和新的预测值为“红色”。
此示例中使用的数据是来自数据集包的 mtcars 数据集
library(ggplot2)
library(datasets)
library(broom)
# Build a simple linear model between hp and mpg
m1<-lm(hp~mpg,data=mtcars)
# Predict new `mpg` given values below
new_mpg = data.frame(mpg=c(23,21,30,28))
new_hp<- augment(m1,newdata=new_mpg)
# plot new predicted values in the graph along with original mpg values
ggplot(data=mtcars,aes(x=mpg,y=hp)) + geom_point(color="black") + geom_smooth(method="lm",col=4,se=F) +
geom_point(data=new_hp,aes(y=.fitted),color="red")
散点图
答案 0 :(得分:3)
这是一个想法。您可以将预测数据和观察数据组合在同一数据框中,然后创建散点图以生成图例。以下代码是现有代码的扩展。
# Prepare the dataset
library(dplyr)
new_hp2 <- new_hp %>%
select(mpg, hp = .fitted) %>%
# Add a label to show it is predicted data
mutate(Type = "Predicted")
dt <- mtcars %>%
select(mpg, hp) %>%
# Add a label to show it is observed data
mutate(Type = "Observed") %>%
# Combine predicted data and observed data
bind_rows(new_hp2)
# plot the data
ggplot(data = dt, aes(x = mpg, y = hp, color = factor(Type))) +
geom_smooth(method="lm", col = 4, se = F) +
geom_point() +
scale_color_manual(name = "Type", values = c("Black", "Red"))
答案 1 :(得分:2)
以下是另一种不使用dplyr
的方式:
ggplot() +
geom_point(data = mtcars, aes(x = mpg, y = hp, colour = "Obs")) +
geom_point(data = new_hp, aes(x = mpg, y = .fitted, colour = "Pred")) +
scale_colour_manual(name="Type",
values = c("black", "red")) +
geom_smooth(data = mtcars, aes(x = mpg, y = hp),
method = "lm", col = 4, se = F)