我正在进行一项练习,其中我应该同时拥有一个列表和字典,如果列表中的值不在字典中,可以打印出指定的消息,有人可以帮忙吗?出于某种原因,它只打印出else语句,但不打印if。我确信我错过了一些东西
poll_takers = ['angel', 'jana', 'murad', 'adel', 'joe', 'jake']
favorite_language = {
'angel': 'python',
'jana': 'c++',
'murad': 'python',
'adel': 'swift',
}
for name in poll_takers:
if name == favorite_language:
print(name.title() + ", thank you for taking the poll.")
else:
print(name.title() + ", please take the poll.")
答案 0 :(得分:1)
你的条件应该是
if name == favorite_language
检查密钥是否在字典中,否则
==
总是求值为false,因为字符串名称不等于字典,因为# testing feature extraction model.
import time
import numpy as np, cv2
import sys
import os
import keras
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization
from keras.layers import Conv3D, MaxPooling3D
from keras.optimizers import SGD,rmsprop, adam
from keras import regularizers
from keras.initializers import Constant
from keras.models import Model
#set gpu options
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=.99, allocator_type = 'BFC')
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True, gpu_options=gpu_options))
config = tf.ConfigProto()
batch_size = 5
num_classes = 1
epochs = 50
nvideos = 56
nframes = 55
nchan = 3
nrows = 480
ncols = 640
#load any single image, resize if needed
img = cv2.imread('C:\\Users\\david\\Documents\\AutonomousSS\\single frame.jpg',cv2.IMREAD_COLOR)
img = cv2.resize(img,(640,480))
x_learn = np.random.randint(0,255,(nvideos,nframes,nrows,ncols,nchan),dtype=np.uint8)
y_learn = np.array([[1],[1],[1],[0],[1],[0],[1],[0],[1],[0],
[1],[0],[0],[1],[0],[0],[1],[0],[1],[0],
[1],[0],[1],[1],[0],[1],[0],[0],[1],[1],
[1],[0],[1],[0],[1],[0],[1],[0],[1],[0],
[0],[1],[0],[0],[1],[0],[1],[0],[1],[0],
[1],[1],[0],[1],[0],[0]],np.uint8)
#each sample, each frame is either the single image for postive examples or 0 for negative examples.
for i in range (nvideos):
if y_learn[i] == 0 :
x_learn[i]=0
else:
x_learn[i,:nframes]=img
#build model
m_loss = 'mean_squared_error'
m_opt = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
m_met = 'acc'
model = Sequential()
# 1st layer group
model.add(Conv3D(32, (3, 3,3), activation='relu',padding="same", name="conv1a", strides=(3, 3, 3),
kernel_initializer = 'glorot_normal',
trainable=False,
input_shape=(nframes,nrows,ncols,nchan)))
#model.add(BatchNormalization(axis=1))
model.add(Conv3D(32, (3, 3, 3), trainable=False, strides=(1, 1, 1), padding="same", name="conv1b", activation="relu"))
#model.add(BatchNormalization(axis=1))
model.add(MaxPooling3D(padding="valid", trainable=False, pool_size=(1, 5, 5), name="pool1", strides=(2, 2, 2)))
# 2nd layer group
model.add(Conv3D(128, (3, 3, 3), trainable=False, strides=(1, 1, 1), padding="same", name="conv2a", activation="relu"))
model.add(Conv3D(128, (3, 3, 3), trainable=False, strides=(1, 1, 1), padding="same", name="conv2b", activation="relu"))
#model.add(BatchNormalization(axis=1))
model.add(MaxPooling3D(padding="valid", trainable=False, pool_size=(1, 5, 5), name="pool2", strides=(2, 2, 2)))
# 3rd layer group
model.add(Conv3D(256, (3, 3, 3), trainable=False, strides=(1, 1, 1), padding="same", name="conv3a", activation="relu"))
model.add(Conv3D(256, (3, 3, 3), trainable=False, strides=(1, 1, 1), padding="same", name="conv3b", activation="relu"))
#model.add(BatchNormalization(axis=1))
model.add(MaxPooling3D(padding="valid", trainable=False, pool_size=(1, 5, 5), name="pool3", strides=(2, 2, 2)))
# 4th layer group
model.add(Conv3D(512, (3, 3, 3), trainable=False, strides=(1, 1, 1), padding="same", name="conv4a", activation="relu"))
model.add(Conv3D(512, (3, 3, 3), trainable=False, strides=(1, 1, 1), padding="same", name="conv4b", activation="relu"))
#model.add(BatchNormalization(axis=1))
model.add(MaxPooling3D(padding="valid", trainable=False, pool_size=(1, 5, 5), name="pool4", strides=(2, 2, 2)))
model.add(Flatten(name='flatten',trainable=False))
model.add(Dense(512,activation='relu', trainable=True,name='den0'))
model.add(Dense(num_classes,activation='softmax',name='den1'))
print (model.summary())
#compile model
model.compile(loss=m_loss,
optimizer=m_opt,
metrics=[m_met])
print ('compiled')
#set callbacks
from keras import backend as K
K.set_learning_phase(0) #set learning phase
tb = keras.callbacks.TensorBoard(log_dir=sample_root_path+'logs', histogram_freq=0,
write_graph=True, write_images=False)
tb.set_model(model)
reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.2,verbose=1,
patience=2, min_lr=0.000001)
reduce_lr.set_model(model)
ear_stop = keras.callbacks.EarlyStopping(monitor='loss', min_delta=0, patience=4, verbose=1, mode='auto')
ear_stop.set_model(model)
#fit
history = model.fit(x_learn, y_learn,
batch_size=batch_size,
callbacks=[reduce_lr,tb, ear_stop],
verbose=1,
validation_split=0.1,
shuffle = True,
epochs=epochs)
score = model.evaluate(x_learn, y_learn, batch_size=batch_size)
print(str(model.metrics_names) + ": " + str(score))
测试了相等性,这就是为什么else语句不断被触发