HIVE:映射加入分区表

时间:2017-06-12 11:20:04

标签: hive hiveql hadoop-partitioning

考虑使用事实和维度表在配置单元中的典型数据仓库方案,假设事实表在具有分区的多个数据节点之间拆分。在连接具有维度(未分区)的事实表(已分区)时,使用地图连接似乎合乎逻辑,因为维度表的大小很小且不大。它们将被存储在内存中,以便有效地连接所有节点上的事实数据。

但是,很少有在线资源建议在分区表上执行Map Joins,两个表上的分区键应该与join key相同。

所以,这是我正在寻找答案的问题:
分区表(事实)是否可以使用非分区表(维度)与MAP连接?

1 个答案:

答案 0 :(得分:0)

答案是 -

地图加入运算符

演示

create table fact (rec_id int,dim_id int) partitioned by (dt date);
create table dim  (dim_id int,descr string);
explain
select  *
from    fact f join dim d
        on d.dim_id = f.dim_id
STAGE DEPENDENCIES:
  Stage-4 is a root stage
  Stage-3 depends on stages: Stage-4
  Stage-0 depends on stages: Stage-3

STAGE PLANS:
  Stage: Stage-4
    Map Reduce Local Work
      Alias -> Map Local Tables:
        d 
          Fetch Operator
            limit: -1
      Alias -> Map Local Operator Tree:
        d 
          TableScan
            alias: d
            Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
            Filter Operator
              predicate: dim_id is not null (type: boolean)
              Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
              HashTable Sink Operator
                keys:
                  0 dim_id (type: int)
                  1 dim_id (type: int)

  Stage: Stage-3
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: f
            Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
            Filter Operator
              predicate: dim_id is not null (type: boolean)
              Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
              Map Join Operator
                condition map:
                     Inner Join 0 to 1
                keys:
                  0 dim_id (type: int)
                  1 dim_id (type: int)
                outputColumnNames: _col0, _col1, _col2, _col6, _col7
                Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
                Select Operator
                  expressions: _col0 (type: int), _col1 (type: int), _col2 (type: date), _col6 (type: int), _col7 (type: string)
                  outputColumnNames: _col0, _col1, _col2, _col3, _col4
                  Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
                  File Output Operator
                    compressed: false
                    Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL Column stats: NONE
                    table:
                        input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                        output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                        serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
      Local Work:
        Map Reduce Local Work

  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink