无法为大型数据集运行Spark作业

时间:2017-06-12 03:41:38

标签: hadoop apache-spark amazon-s3 hbase hfile

我写了一篇Spark作业,从S3中读取Hive数据并生成HFiles。

当只读取一个ORC文件(大约190 MB)时,此作业正常工作,但是,当我用它来读取整个S3目录时,大约有400个ORC文件,所以大约400 * 190 MB = 76 GB数据,它保持不变抛出以下错误/ stacktrace:

17/06/12 01:48:03 ERROR server.TransportRequestHandler: Error sending result StreamResponse{streamId=/jars/importer-all.jar, byteCount=194727686, body=FileSegmentManagedBuffer{file=/tmp/importer-all.jar, offset=0, length=194727686}} to /10.211.XX.XX:39149; closing connection
java.nio.channels.ClosedChannelException
    at io.netty.channel.AbstractChannel$AbstractUnsafe.close(...)(Unknown Source)
17/06/12 01:48:03 WARN scheduler.TaskSetManager: Lost task 6.0 in stage 0.0 (TID 6, ip-10-211-127-63.ap-northeast-2.compute.internal, executor 9): java.nio.channels.ClosedChannelException
    at org.apache.spark.network.client.StreamInterceptor.channelInactive(StreamInterceptor.java:60)
    at org.apache.spark.network.util.TransportFrameDecoder.channelInactive(TransportFrameDecoder.java:179)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:251)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:237)
    at io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:230)
    at io.netty.channel.DefaultChannelPipeline$HeadContext.channelInactive(DefaultChannelPipeline.java:1289)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:251)
    at io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:237)
    at io.netty.channel.DefaultChannelPipeline.fireChannelInactive(DefaultChannelPipeline.java:893)
    at io.netty.channel.AbstractChannel$AbstractUnsafe$7.run(AbstractChannel.java:691)
    at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:408)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:455)
    at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)
    at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
    at java.lang.Thread.run(Thread.java:745)

17/06/12 01:48:03 INFO scheduler.TaskSetManager: Starting task 6.1 in stage 0.0 (TID 541, ip-10-211-126-250.ap-northeast-2.compute.internal, executor 72, partition 6, PROCESS_LOCAL, 6680 bytes)
17/06/12 01:48:03 ERROR server.TransportRequestHandler: Error sending result StreamResponse{streamId=/jars/importer-all.jar, byteCount=194727686, body=FileSegmentManagedBuffer{file=/tmp/importer-all.jar, offset=0, length=194727686}} to /10.211.XX.XX:39151; closing connection
java.nio.channels.ClosedChannelException
    at io.netty.channel.AbstractChannel$AbstractUnsafe.close(...)(Unknown Source)

我的群集足以处理它:(已经过验证)

它有40个节点,超过800 GB可用内存,320个VCores。

这是我的Java代码:

protected void sparkGenerateHFiles(JavaRDD<Row> rdd) throws IOException {
        System.out.println("In sparkGenerateHFiles....");
        JavaPairRDD<ImmutableBytesWritable, KeyValue> javaPairRDD = rdd.mapToPair(
            new PairFunction<Row, ImmutableBytesWritable, KeyValue>() {
            public Tuple2<ImmutableBytesWritable, KeyValue> call(Row row) throws Exception {
                System.out.println("running call now ....");
                String key = (String) row.get(0);
                String value = (String) row.get(1);

                ImmutableBytesWritable rowKey = new ImmutableBytesWritable();
                byte[] rowKeyBytes = Bytes.toBytes(key);
                rowKey.set(rowKeyBytes);

                KeyValue keyValue = new KeyValue(rowKeyBytes,
                    Bytes.toBytes("fam"),
                    Bytes.toBytes("qualifier"),
                    ProductJoin.newBuilder()
                        .setId(key)
                        .setSolrJson(value)
                        .build().toByteArray());

                return new Tuple2<ImmutableBytesWritable, KeyValue>(rowKey, keyValue);
            }
        });
        Partitioner partitioner = new IntPartitioner(2);
        // repartition and sort the data - HFiles want sorted data
        JavaPairRDD<ImmutableBytesWritable, KeyValue> repartitionedRDD =
            javaPairRDD.repartitionAndSortWithinPartitions(partitioner);


        Configuration baseConf = HBaseConfiguration.create();
        Configuration conf = new Configuration();
        conf.set(HBASE_ZOOKEEPER_QUORUM, importerParams.zkQuorum);
        Job job = new Job(baseConf, "map data");
        HTable table = new HTable(conf, importerParams.hbaseTargetTable);
        System.out.println("gpt table: " + table.getName());
        HFileOutputFormat2.configureIncrementalLoad(job, table);
        System.out.println("Done configuring incremental load....");

        Configuration config = job.getConfiguration();


        repartitionedRDD.saveAsNewAPIHadoopFile(
            "HFILE_OUTPUT_PATH",
            ImmutableBytesWritable.class,
            KeyValue.class,
            HFileOutputFormat2.class,
            config
            );
        System.out.println("Saved to HFILE_OUTPUT_PATH: " + HFILE_OUTPUT_PATH);
    }

protected JavaRDD<Row> readJsonTable() {
        System.out.println("In readJsonTable.....");
        SparkSession.Builder builder = SparkSession.builder().appName("Importer");
        String hiveTable = "";
        if (importerParams.local) {
            builder.master("local");
            hiveTable = HIVE_TABLE_S3A_DEV_SAMPLE;
        } else {
            hiveTable = importerParams.hiveSourceTable;
        }
        SparkSession spark = builder.getOrCreate();

        SparkContext sparkContext = spark.sparkContext();

        // this is important. need to set the endpoint to ap-northeast-2
        sparkContext.hadoopConfiguration()
            .set("fs.s3a.endpoint", "s3.ap-northeast-2.amazonaws.com");

        Dataset<Row> rows = null;
        if (importerParams.local) {
            rows = spark.read().format("orc").load(hiveTable);
        } else {
            rows = spark.read().format("orc").load(hiveTable);//use this one temporarily
//          rows = spark.read().format("orc").load(HIVE_TABLE_S3A_PREFIX
            // + importerParams.latestDateHour);
        }
        System.out.println("Finished loading hive table from S3, rows.count() = "
            + (rows != null ? rows.count() : 0));

        return rows.toJavaRDD();
    }

主程序:

        long startTime = System.currentTimeMillis();
        JavaRDD<Row> rdd = readJsonTable();

        sparkGenerateHFiles(rdd);
        System.out.println("it took " + (System.currentTimeMillis() - startTime)/1000 + " seconds to generate HFiles...\n\n\n\n");

我尝试了什么:

我在Stackoverflow上看到了最接近的post。 然后我就设定了这个 builder.config("spark.shuffle.blockTransferService", "nio"); 但仍然没有运气。

非常感谢任何帮助!

1 个答案:

答案 0 :(得分:0)

正如@Wang指出的那样,这真的是由于我的数据偏差问题。

要解决这个问题,我所做的是:

我重新创建了我的HBase表,但这一次,我使用了SPLITS,并将我的HBase表拆分为80个区域。 然后在我的Spark代码中,我编写了一个自定义的分区程序,根据其密钥对每个条目进行重新分区,这样就不会出现HOTSPOTTING问题,即一个区域服务器正在过载而其他区域服务器处于空闲状态。

在使用SPLITS创建HBase表时,一路上学到了一些其他技巧,默认情况下,第一个区域的startkey和最后一个区域的endkey为空字符串"",请务必在那里做正确的事以避免HOTSPOTTING。

以下是我partitioner的一个工作示例。

谢谢!