我目前正在使用以下值对CSV进行索引并遇到错误:
ValueError:找到数量不一致的输入变量 样本:[1,514]
它正在检查它是一行有514列,强调我调用了一个特定的参数错误,或者是因为我删除了NaN(大多数数据默认为?)
"Classification","DGMLEN","IPLEN","TTL","IP"
"1","0.000000","192.168.1.5","185.60.216.35","TLSv1.2"
"2","0.000160","192.168.1.5","185.60.216.35","TCP"
"3","0.000161","192.168.1.5","185.60.216.35","TLSv1.2"
import pandas
df = pandas.read_csv('wcdemo.csv', header=0,
names = ["Classification", "DGMLEN", "IPLEN", "TTL", "IP"],
na_values='.')
df = df.apply(pandas.to_numeric, errors='coerce')
#Data=pd.read_csv ('wcdemo.csv').reset_index()#index_col='false')
feature_cols=['Classification','DGMLEN','IPLEN','IP']
X=df[feature_cols]
#datanewframe = pandas.Series(['Classification', 'DGMLEN', 'IPLEN', 'TTL', 'IP'], dtype='object')
#df = pandas.read_csv('wcdemo.csv')
#indexed_df = df.set_index(['Classification', 'DGMLEN','IPLEN','TTL','IP']
df['IPLEN'] = pandas.to_numeric(df['IPLEN'], errors='coerce').fillna(0)
df['TTL'] = pandas.to_numeric(df['TTL'], errors='coerce').fillna(0)
#DEFINE X TRAIN
X_train = df['IPLEN']
y_train = df['TTL']
#s = pandas.Series(['Classification', 'DGMLEN', 'IPLEN', 'TTL', 'IP'])
Y=df['TTL']
from sklearn.linear_model import LogisticRegression
logreg=LogisticRegression()
logreg.fit(X_train,y_train,).fillna(0.0)
#with the error being triggered here
logreg.fit(X_train,y_train,).fillna(0.0)
答案 0 :(得分:1)
由于X_train中只有一个功能,因此其当前形状为(n_samples,)
。但是scikit估计器要求X具有(n_samples, n_features)
的形状。所以你需要重塑你的数据。
使用此:
logreg.fit(X_train.reshape(-1,1), y_train).fillna(0.0)