我正在尝试使用python对图像进行剪切转换。我正在使用skimage(scikit-image),opencv或类似的也可以完成我认为的工作。问题在于,每当我尝试使用仿射变换和扭曲(变形)时,图像看起来“裁剪”或“剪裁”(“剪切”图像的某些部分丢失),只要剪切变换移动像素(涉及)像素的翻译)。我需要支持图像比例的“画布”,以便“剪切”图像适合新图像,但保留输入图像的所有信息(图像附加)
答案 0 :(得分:0)
我遇到了同样的麻烦,最终我设法找到了一种解决方案,该解决方案可以很好地处理我测试过的图像。我当时想在图像上应用剪切,旋转和平移变换。
如果您希望所有图像的大小都相同,则使用45度角,因为这是需要更多空间的角度。
import numpy as np
import cv2
#Parameters of the affine transform:
angle = 45; #Angle in degrees.
shear = 1;
translation = 5;
type_border = cv2.BORDER_CONSTANT;
color_border = (255,255,255);
original_image = cv2.imread(name_image_file);
rows,cols,ch = original_image.shape;
#First: Necessary space for the rotation
M = cv2.getRotationMatrix2D((cols/2,rows/2), angle, 1);
cos_part = np.abs(M[0, 0]); sin_part = np.abs(M[0, 1]);
new_cols = int((rows * sin_part) + (cols * cos_part));
new_rows = int((rows * cos_part) + (cols * sin_part));
#Second: Necessary space for the shear
new_cols += (shear*new_cols);
new_rows += (shear*new_rows);
#Calculate the space to add with border
up_down = int((new_rows-rows)/2); left_right = int((new_cols-cols)/2);
final_image = cv2.copyMakeBorder(original_image, up_down, up_down,left_right,left_right,type_border, value = color_border);
rows,cols,ch = final_image.shape;
#Application of the affine transform.
M_rot = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1);
translat_center_x = -(shear*cols)/2;
translat_center_y = -(shear*rows)/2;
M = M_rot + np.float64([[0,shear,translation + translat_center_x], [shear,0,translation + translat_center_y]]);
final_image = cv2.warpAffine(final_image , M, (cols,rows),borderMode = type_border, borderValue = color_border);
示例(将“ cv2.copyMakeBorder”和“ cv2.getRotationMatrix2D”的边框设置为白色): 角度= -45度。剪切= -0.5