我有一个读取流来使用来自Kafka主题的数据,并且根据每个传入消息中的属性值,我必须将数据写入S3中的2个不同位置中的任何一个(如果value1写入location1,否则到位2)。
在下面的高层是我做的那样,
Dataset<Row> kafkaStreamSet = sparkSession
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", kafkaBootstrap)
.option("subscribe", kafkaTopic)
.option("startingOffsets", "latest")
.option("failOnDataLoss", false)
.option("maxOffsetsPerTrigger", offsetsPerTrigger)
.load();
//raw message to ClickStream
Dataset<ClickStream> ds1 = kafkaStreamSet.mapPartitions(processClickStreamMessages, Encoders.bean(ClickStream.class));
ClickStream.java中有2个子对象,一次只会填充其中一个,具体取决于消息属性值是value1还是value2,
1)BookingRequest.java if value1,
2)PropertyPageView.java if value2,
//fetch BookingRequests in the ClickStream
Dataset<BookingRequest> ds2 = ds1.map(filterBookingRequests,Encoders.bean(BookingRequest.class));
//fetch PropertyPageViews in the ClickStream
Dataset<PropertyPageView> ds3 = ds1.map(filterPropertyPageViews,Encoders.bean(PropertyPageView.class));
最后将ds2和ds3写入2个不同的位置,
StreamingQuery bookingRequestsParquetStreamWriter = ds2.writeStream().outputMode("append")
.format("parquet")
.trigger(ProcessingTime.create(bookingRequestProcessingTime, TimeUnit.MILLISECONDS))
.option("checkpointLocation", "s3://" + s3Bucket+ "/checkpoint/bookingRequests")
.partitionBy("eventDate")
.start("s3://" + s3Bucket+ "/" + bookingRequestPath);
StreamingQuery PageViewsParquetStreamWriter = ds3.writeStream().outputMode("append")
.format("parquet")
.trigger(ProcessingTime.create(pageViewProcessingTime, TimeUnit.MILLISECONDS))
.option("checkpointLocation", "s3://" + s3Bucket+ "/checkpoint/PageViews")
.partitionBy("eventDate")
.start("s3://" + s3Bucket+ "/" + pageViewPath);
bookingRequestsParquetStreamWriter.awaitTermination();
PageViewsParquetStreamWriter.awaitTermination();
它似乎工作正常,我看到在部署应用程序时将数据写入不同的路径。但是,每当作业在失败或手动停止和启动时重新启动时,它都会以下面的异常(其中userSessionEventJoin.global是我的主题名称)失败,
引起:org.apache.spark.sql.streaming.StreamingQueryException:期望例如: {“topicA”:{“0”:23,“1”: - 1},“topicB”:{“0”: - 2}},得到{“userSessionEventJoin.global”:{“92”:154362528,“ 101 org.apache.spark.sql.kafka010.JsonUtils $ .partitionOffsets(JsonUtils.scala:74) org.apache.spark.sql.kafka010.KafkaSourceOffset $ .apply(KafkaSourceOffset.scala:59)
如果我删除了所有的检查点信息,那么它会再次启动并在给定的2个位置开始新的检查点,但这意味着我必须再次从最新的偏移量开始处理并丢失所有先前的偏移量。 spark版本是2.1,本主题有100多个分区 我只使用一个写入流(一个检查点位置)进行测试,重新启动时会发生同样的异常。
请提出任何决议,谢谢。
答案 0 :(得分:0)
您的代码似乎是一个简单的点击流作业。在您的示例中,您将创建一个spark流式会话,并使用checkpoint目录间歇性地存储检查点数据。
但您的代码却不知道如何从检查点补充水分。
本段末尾将会清楚。
以下是生产级别流式传输作业的步骤。
1) Use getOrCreate API to create your spark streaming session.
a) getOrCreate takes two parameters. A function "(....) => sparkSession" and the checkpoint directory.
2) When program starts for the first time, it uses the checkpoint directory to store it's inner details. (Among other uses)
3) When program crashes/"stops and restarted", the spark Streaming session is created from the checkpoint hence giving you what you want.
由于在堆栈溢出时不鼓励链接,我将把示例代码放在下面。但它基本上取自Spark Github example
/**
* Counts words in text encoded with UTF8 received from the network every second. This example also
* shows how to use lazily instantiated singleton instances for Accumulator and Broadcast so that
* they can be registered on driver failures.
*
* Usage: JavaRecoverableNetworkWordCount <hostname> <port> <checkpoint-directory> <output-file>
* <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive
* data. <checkpoint-directory> directory to HDFS-compatible file system which checkpoint data
* <output-file> file to which the word counts will be appended
*
* <checkpoint-directory> and <output-file> must be absolute paths
*
* To run this on your local machine, you need to first run a Netcat server
*
* `$ nc -lk 9999`
*
* and run the example as
*
* `$ ./bin/run-example org.apache.spark.examples.streaming.JavaRecoverableNetworkWordCount \
* localhost 9999 ~/checkpoint/ ~/out`
*
* If the directory ~/checkpoint/ does not exist (e.g. running for the first time), it will create
* a new StreamingContext (will print "Creating new context" to the console). Otherwise, if
* checkpoint data exists in ~/checkpoint/, then it will create StreamingContext from
* the checkpoint data.
*
* Refer to the online documentation for more details.
*/
public final class JavaRecoverableNetworkWordCount {
private static final Pattern SPACE = Pattern.compile(" ");
private static JavaStreamingContext createContext(String ip,
int port,
String checkpointDirectory,
String outputPath) {
// If you do not see this printed, that means the StreamingContext has been loaded
// from the new checkpoint
System.out.println("Creating new context");
File outputFile = new File(outputPath);
if (outputFile.exists()) {
outputFile.delete();
}
SparkConf sparkConf = new SparkConf().setAppName("JavaRecoverableNetworkWordCount");
// Create the context with a 1 second batch size
JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.seconds(1));
ssc.checkpoint(checkpointDirectory);
// Create a socket stream on target ip:port and count the
// words in input stream of \n delimited text (eg. generated by 'nc')
JavaReceiverInputDStream<String> lines = ssc.socketTextStream(ip, port);
JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(SPACE.split(x)).iterator());
JavaPairDStream<String, Integer> wordCounts = words.mapToPair(s -> new Tuple2<>(s, 1))
.reduceByKey((i1, i2) -> i1 + i2);
wordCounts.foreachRDD((rdd, time) -> {
// Get or register the blacklist Broadcast
Broadcast<List<String>> blacklist =
JavaWordBlacklist.getInstance(new JavaSparkContext(rdd.context()));
// Get or register the droppedWordsCounter Accumulator
LongAccumulator droppedWordsCounter =
JavaDroppedWordsCounter.getInstance(new JavaSparkContext(rdd.context()));
// Use blacklist to drop words and use droppedWordsCounter to count them
String counts = rdd.filter(wordCount -> {
if (blacklist.value().contains(wordCount._1())) {
droppedWordsCounter.add(wordCount._2());
return false;
} else {
return true;
}
}).collect().toString();
String output = "Counts at time " + time + " " + counts;
System.out.println(output);
System.out.println("Dropped " + droppedWordsCounter.value() + " word(s) totally");
System.out.println("Appending to " + outputFile.getAbsolutePath());
Files.append(output + "\n", outputFile, Charset.defaultCharset());
});
return ssc;
}
public static void main(String[] args) throws Exception {
if (args.length != 4) {
System.err.println("You arguments were " + Arrays.asList(args));
System.err.println(
"Usage: JavaRecoverableNetworkWordCount <hostname> <port> <checkpoint-directory>\n" +
" <output-file>. <hostname> and <port> describe the TCP server that Spark\n" +
" Streaming would connect to receive data. <checkpoint-directory> directory to\n" +
" HDFS-compatible file system which checkpoint data <output-file> file to which\n" +
" the word counts will be appended\n" +
"\n" +
"In local mode, <master> should be 'local[n]' with n > 1\n" +
"Both <checkpoint-directory> and <output-file> must be absolute paths");
System.exit(1);
}
String ip = args[0];
int port = Integer.parseInt(args[1]);
String checkpointDirectory = args[2];
String outputPath = args[3];
// Function to create JavaStreamingContext without any output operations
// (used to detect the new context)
Function0<JavaStreamingContext> createContextFunc =
() -> createContext(ip, port, checkpointDirectory, outputPath);
JavaStreamingContext ssc =
JavaStreamingContext.getOrCreate(checkpointDirectory, createContextFunc);
ssc.start();
ssc.awaitTermination();
}
}
答案 1 :(得分:0)
这是Spark版本2.1.0中的一个错误,在使用该版本运行时似乎在spark 2.1.1中得到修复。