在一个火花工作中,我加入了两个RDD,
val data: RDD[(Long, (String, String))] = sc.objectFile[(Long, scala.collection.mutable.HashMap[String, Object])](outputFile)
.leftOuterJoin(attributionData)
这里outputFile是另一个处理来自hive的数据的spark作业的输出。 hive中的一个表有4000万条记录,当我限制读表只能获取1000万条记录时,代码工作正常。但是,对于完整数据(如果我删除limit()),会发生以下错误,
10:43:27 WARN TaskSetManager: Lost task 0.0 in stage 1.0 (TID 2, buysub.com): java.lang.NegativeArraySizeException
at com.esotericsoftware.kryo.util.IdentityObjectIntMap.resize(IdentityObjectIntMap.java:409)
at com.esotericsoftware.kryo.util.IdentityObjectIntMap.putStash(IdentityObjectIntMap.java:227)
at com.esotericsoftware.kryo.util.IdentityObjectIntMap.push(IdentityObjectIntMap.java:221)
at com.esotericsoftware.kryo.util.IdentityObjectIntMap.put(IdentityObjectIntMap.java:117)
at com.esotericsoftware.kryo.util.IdentityObjectIntMap.putStash(IdentityObjectIntMap.java:228)
at com.esotericsoftware.kryo.util.IdentityObjectIntMap.push(IdentityObjectIntMap.java:221)
at com.esotericsoftware.kryo.util.IdentityObjectIntMap.put(IdentityObjectIntMap.java:117)
at com.esotericsoftware.kryo.util.MapReferenceResolver.addWrittenObject(MapReferenceResolver.java:23)
at com.esotericsoftware.kryo.Kryo.writeReferenceOrNull(Kryo.java:598)
at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:566)
at com.twitter.chill.TraversableSerializer$$anonfun$write$1.apply(Traversable.scala:29)
at com.twitter.chill.TraversableSerializer$$anonfun$write$1.apply(Traversable.scala:27)
at scala.collection.immutable.HashMap$HashMap1.foreach(HashMap.scala:224)
at scala.collection.immutable.HashMap$HashTrieMap.foreach(HashMap.scala:403)
at com.twitter.chill.TraversableSerializer.write(Traversable.scala:27)
at com.twitter.chill.TraversableSerializer.write(Traversable.scala:21)
at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:568)
at com.twitter.chill.TraversableSerializer$$anonfun$write$1.apply(Traversable.scala:29)
at com.twitter.chill.TraversableSerializer$$anonfun$write$1.apply(Traversable.scala:27)
at scala.collection.immutable.List.foreach(List.scala:318)
at com.twitter.chill.TraversableSerializer.write(Traversable.scala:27)
at com.twitter.chill.TraversableSerializer.write(Traversable.scala:21)
at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:568)
at com.twitter.chill.Tuple2Serializer.write(TupleSerializers.scala:37)
at com.twitter.chill.Tuple2Serializer.write(TupleSerializers.scala:33)
at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:568)
at com.twitter.chill.TraversableSerializer$$anonfun$write$1.apply(Traversable.scala:29)
at com.twitter.chill.TraversableSerializer$$anonfun$write$1.apply(Traversable.scala:27)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:98)
at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:98)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:226)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:39)
at scala.collection.mutable.HashMap.foreach(HashMap.scala:98)
at com.twitter.chill.TraversableSerializer.write(Traversable.scala:27)
at com.twitter.chill.TraversableSerializer.write(Traversable.scala:21)
at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:568)
我正在使用Spark 1.6。以下是火花配置,
conf.set("spark.driver.memory", "4G")
conf.set("spark.executor.memory", "30G")
conf.set("spark.rdd.compress", "true")
conf.set("spark.storage.memoryFraction", "0.3")
conf.set("spark.shuffle.consolidateFiles", "true")
conf.set("spark.shuffle.memoryFraction", "0.5")
conf.set("spark.akka.frameSize", "384")
conf.set("spark.io.compression.codec", "lz4")
conf.set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
答案 0 :(得分:4)
我发现一些信息指出这是Kryo序列化中的一个错误:
https://github.com/EsotericSoftware/kryo/issues/382
它已在Kryo 4中修复,但火花尚未使用该版本:
https://issues.apache.org/jira/browse/SPARK-20389
作为临时解决方案,这听起来可能会有所帮助:
spark.executor.extraJavaOptions –XX:hashCode=0
spark.driver.extraJavaOptions –XX:hashCode=0
(来自https://github.com/broadinstitute/gatk/issues/1524#issuecomment-189368808)
或者您可以简单地使用不同的序列化程序,但这可能会减慢速度。
答案 1 :(得分:0)
当Kryo的参考表超过最大整数值(整数溢出)时,会发生这种情况。
这样就解决了,将spark.kryo.referenceTracking
设置为false