我试图理解用于线性回归的LASSO算法。我已经使用朴素坐标下降法实现了算法以进行优化。然而,我从我的代码中获得的系数与从R中的LASSO的'glmnet'包中获得的系数不匹配。我想了解如何使算法更准确,以便系数与从R.我认为他们也使用坐标下降。
注意:我已经生成了一些玩具数据,其中包含11个观察值,以及6个 特征(x,x ^ 2,x ^ 3,...,x ^ 6)。最后一列包含y值 从虚函数生成(e ^( - x ^ 2))。我想用LASSO来 估计这个功能。另外,我随机选择了最初的 权重向量,多次交叉检查我的结果。
这是我的代码:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<time.h>
int num_dim = 6;
int num_obs = 11;
/*Computes the normalization factor*/
float norm_feature(int j,double arr[][7],int n){
float sum = 0.0;
int i;
for(i=0;i<n;i++){
sum = sum + pow(arr[i][j],2);
}
return sum;
}
/*Computes the partial sum*/
float approx(int dim,int d_ignore,float weights[],double arr[][7],int
i){
int flag = 1;
if(d_ignore == -1)
flag = 0;
int j;
float sum = 0.0;
for(j=0;j<dim;j++){
if(j != d_ignore)
sum = sum + weights[j]*arr[i][j];
else
continue;
}
return sum;
}
/* Computes rho-j */
float rho_j(double arr[][7],int n,int j,float weights[7]){
float sum = 0.0;
int i;
float partial_sum ;
for(i=0;i<n;i++){
partial_sum = approx(num_dim,j,weights,arr,i);
sum = sum + arr[i][j]*(arr[i][num_dim]-partial_sum);
}
return sum;
}
float intercept(float arr1[7],double arr[][7],int dim) {
int i;
float sum =0.0;
for (i = 0; i < num_obs; i++) {
sum = sum + pow((arr[i][num_dim]) - approx(num_dim, -1, arr1, arr,
i), 1);
}
return sum;
}
int main(){
double data[num_obs][7];
int i=0,j=0;
float a = 1.0;
float lambda = 0.1; //Setting lambda
float weights[7]; //weights[6] contains the intercept
srand((unsigned int) time(NULL));
/*Generating the data matrix */
for(i=0;i<11;i++)
data[i][0] = ((float)rand()/(float)(RAND_MAX)) * a;
for(i=0;i<11;i++)
for(j=1;j<6;j++)
data[i][j] = pow(data[i][0],j+1);
for(i=0;i<11;i++)
data[i][6] = exp(-pow(data[i][0],2)); // the last column in the
datamatrix contains the y values generated by the dummy function
/*Printing the data matrix */
printf("Data Matrix:\n");
for(i=0;i<11;i++){
for(j=0;j<7;j++){
printf("%lf ",data[i][j]);}
printf("\n");}
printf("\n");
int seed =0;
while(seed<20) {
//Initializing the weight vector
for (i = 0; i < 7; i++)
weights[i] = ((float) rand() / (float) (RAND_MAX)) * a;
int iter = 500;
int t = 0;
int r, l;
double rho[num_dim];
for (i = 0; i < 6; i++) {
rho[i] = rho_j(data, num_obs, r, weights);
}
// Intercept initialization
weights[num_dim] = intercept(weights,data,num_dim);
printf("Weights initialization: ");
for (i = 0; i < (num_dim+1); i++)
printf("%f ", weights[i]);
printf("\n");
while (t < iter) {
for (r = 0; r < num_dim; r++) {
rho[r] = rho_j(data, num_obs, r, weights);
//printf("rho %d:%f ",r,rho[r]);
if (rho[r] < -lambda / 2)
weights[r] = (rho[r] + lambda / 2) / norm_feature(r,
data, num_obs);
else if (rho[r] > lambda / 2)
weights[r] = (rho[r] - lambda / 2) / norm_feature(r,
data, num_obs);
else
weights[r] = 0;
weights[num_dim] = intercept(weights, data, num_dim);
}
/* printf("Iter(%d): ", t);
for (l = 0; l < 7; l++)
printf("%f ", weights[l]);
printf("\n");*/
t++;
}
//printf("\n");
printf("Final Weights: ");
for (i = 0; i < 7; i++)
printf("%f ", weights[i]);
printf("\n");
printf("\n");
seed++;
}
return 0;
}
伪代码: