我希望能够从许多异步协同程序中获益。 Asyncio的as_completed
有点接近我正在寻找的东西(即我希望任何协同程序能够在任何时候回到调用者然后继续),但是似乎只允许常规协程一次返回。
这是我到目前为止所拥有的:
import asyncio
async def test(id_):
print(f'{id_} sleeping')
await asyncio.sleep(id_)
return id_
async def test_gen(id_):
count = 0
while True:
print(f'{id_} sleeping')
await asyncio.sleep(id_)
yield id_
count += 1
if count > 5:
return
async def main():
runs = [test(i) for i in range(3)]
for i in asyncio.as_completed(runs):
i = await i
print(f'{i} yielded')
if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.close()
将runs = [test(i) for i in range(3)]
替换为runs = [test_gen(i) for i in range(3)]
并将for i in asyncio.as_completed(runs)
替换为每次收益,这是我所追求的。
这是否可以在Python中表达,是否有任何第三方可能为协程流程标准库提供更多选项?
由于
答案 0 :(得分:8)
您可以使用aiostream.stream.merge:
from aiostream import stream
async def main():
runs = [test_gen(i) for i in range(3)]
async for x in stream.merge(*runs):
print(f'{x} yielded')
在safe context中运行它以确保在迭代后正确清理生成器:
async def main():
runs = [test_gen(i) for i in range(3)]
merged = stream.merge(*runs)
async with merged.stream() as streamer:
async for x in streamer:
print(f'{x} yielded')
或者使用pipes:
使其更紧凑from aiostream import stream, pipe
async def main():
runs = [test_gen(i) for i in range(3)]
await (stream.merge(*runs) | pipe.print('{} yielded'))
documentation中的更多示例。
通过@nirvana-msu发表评论
通过相应地准备来源,可以识别产生给定值的发电机:
async def main():
runs = [test_gen(i) for i in range(3)]
sources = [stream.map(xs, lambda x: (i, x)) for i, xs in enumerate(runs)]
async for i, x in stream.merge(*sources):
print(f'ID {i}: {x}')