我正在进行图像分类Kaggle比赛并从Kaggle.com下载一些训练图像。然后我使用ResNet50的转移学习来处理这些图像,在Keras 2.0和Tensorflow中作为背景(和Python 3)。
然而,总共1281张火车图像中有258张可能会损坏EXIF数据'并且在加载到ResNet模型时被忽略,很可能是由于Pillow issue。
输出消息如下:
/home/shi/anaconda3/lib/python3.6/site-packages/PIL/TiffImagePlugin.py:692: UserWarning: Possibly corrupt EXIF data. Expecting to read 524288 bytes but only got 0. Skipping tag 3
"Skipping tag %s" % (size, len(data), tag))
/home/shi/anaconda3/lib/python3.6/site-packages/PIL/TiffImagePlugin.py:692: UserWarning: Possibly corrupt EXIF data. Expecting to read 393216 bytes but only got 0. Skipping tag 3
"Skipping tag %s" % (size, len(data), tag))
/home/shi/anaconda3/lib/python3.6/site-packages/PIL/TiffImagePlugin.py:692: UserWarning: Possibly corrupt EXIF data. Expecting to read 33554432 bytes but only got 0. Skipping tag 4
"Skipping tag %s" % (size, len(data), tag))
/home/shi/anaconda3/lib/python3.6/site-packages/PIL/TiffImagePlugin.py:692: UserWarning: Possibly corrupt EXIF data. Expecting to read 25165824 bytes but only got 0. Skipping tag 4
"Skipping tag %s" % (size, len(data), tag))
/home/shi/anaconda3/lib/python3.6/site-packages/PIL/TiffImagePlugin.py:692: UserWarning: Possibly corrupt EXIF data. Expecting to read 131072 bytes but only got 0. Skipping tag 3
"Skipping tag %s" % (size, len(data), tag))
(more to come ...)
根据输出信息,我只知道它们在那里,但不知道它们是哪一个......
我的问题是:如何识别这258张图片,以便我可以手动将它们从数据集中删除?
答案 0 :(得分:2)
即使这个问题已经存在一年多了,我也想表明我的解决方案,因为我遇到了同样的问题。
我正在编辑错误消息。输出显示在系统上的哪里找到文件以及行号。 例如,我更改了以下内容:
if len(data) != size:
warnings.warn("Possibly corrupt EXIF data. "
"Expecting to read %d bytes but only got %d."
" Skipping tag %s" % (size, len(data), tag))
continue
到
if len(data) != size:
raise ValueError('Corrupt Exif data')
warnings.warn("Possibly corrupt EXIF data. "
"Expecting to read %d bytes but only got %d."
" Skipping tag %s" % (size, len(data), tag))
continue
我捕获ValueError的代码如下所示。该代码为您提供了PIL中断且不会显示无用消息的优点。您也可以抓住并使用它,例如通过“除外”部分删除相应的文件。
import os
from PIL import Image
imageFolder = /Path/To/Image/Folder
listImages = os.listdir(imageFolder)
for img in listImages:
imgPath = os.path.join(imageFolder,img)
try:
img = Image.open(imgPath)
exif_data = img._getexif()
except ValueError as err:
print(err)
print("Error on image: ", img)
我知道添加ValueError部分既快速又肮脏,但是比面对所有无用的警告消息要好。
答案 1 :(得分:0)
最简单的方法是修改代码以一次处理一个图像,然后迭代每个图像并检查哪个图像生成警告。