以下是我的Spark DataFrame示例,其下方有printSchema
:
+--------------------+---+------+------+--------------------+
| device_id|age|gender| group| apps|
+--------------------+---+------+------+--------------------+
|-9073325454084204615| 24| M|M23-26| null|
|-8965335561582270637| 28| F|F27-28|[1.0,1.0,1.0,1.0,...|
|-8958861370644389191| 21| M| M22-|[4.0,0.0,0.0,0.0,...|
|-8956021912595401048| 21| M| M22-| null|
|-8910497777165914301| 25| F|F24-26| null|
+--------------------+---+------+------+--------------------+
only showing top 5 rows
root
|-- device_id: long (nullable = true)
|-- age: integer (nullle = true)
|-- gender: string (nullable = true)
|-- group: string (nullable = true)
|-- apps: vector (nullable = true)
我试图在' apps'中填补null。与np.zeros(19237)的列。但是当我执行
时df.fillna({'apps': np.zeros(19237)}))
我收到错误
Py4JJavaError: An error occurred while calling o562.fill.
: java.lang.IllegalArgumentException: Unsupported value type java.util.ArrayList
或者如果我尝试
df.fillna({'apps': DenseVector(np.zeros(19237)})))
我收到错误
AttributeError: 'numpy.ndarray' object has no attribute '_get_object_id'
有什么想法吗?
答案 0 :(得分:3)
DataFrameNaFunctions
仅支持本机(无UDT)类型的子集,因此您需要在此处使用UDF。
from pyspark.sql.functions import coalesce, col, udf
from pyspark.ml.linalg import Vectors, VectorUDT
def zeros(n):
def zeros_():
return Vectors.sparse(n, {})
return udf(zeros_, VectorUDT())()
使用示例:
df = spark.createDataFrame(
[(1, Vectors.dense([1, 2, 3])), (2, None)],
("device_id", "apps"))
df.withColumn("apps", coalesce(col("apps"), zeros(3))).show()
+---------+-------------+
|device_id| apps|
+---------+-------------+
| 1|[1.0,2.0,3.0]|
| 2| (3,[],[])|
+---------+-------------+