考虑以下样本数据表
dt <- data.table(src = LETTERS[1:10],
dst = LETTERS[10:1],
src1 = letters[15:24],
dst1 = letters[24:15])
#which looks like,
# src dst src1 dst1
# 1: A J o x
# 2: B I p w
# 3: C H q v
# 4: D G r u
# 5: E F s t
# 6: F E t s
# 7: G D u r
# 8: H C v q
# 9: I B w p
#10: J A x o
第一个目标是根据反向行方式配对元素(src-dst&amp; src1-dst1)对其进行排序,可以按如下方式实现,以创建5 '对':
dt[, key := paste0(pmin(src, dst), pmax(src, dst), pmin(src1, dst1), pmax(src1, dst1))][order(key)]
# src dst src1 dst1 key
# 1: A J o x AJox
# 2: J A x o AJox
# 3: B I p w BIpw
# 4: I B w p BIpw
# 5: C H q v CHqv
# 6: H C v q CHqv
# 7: D G r u DGru
# 8: G D u r DGru
# 9: E F s t EFst
#10: F E t s EFst
然而,在现实生活中,可能至少有一行没有一对(“不完整流”)。所以这是一个真实的例子,
# cdatetime srcaddr dstaddr srcport dstport key totals time_diff
# 1: 2017-05-12 14:58:32 IP_1 IP_2 54793 8080 182808054793 3 NA
# 2: 2017-05-12 14:58:32 IP_2 IP_1 8080 54793 182808054793 3 0
# 3: 2017-05-17 08:37:16 IP_1 IP_2 54793 8080 182808054793 3 409124
# 4: 2017-05-11 08:12:28 IP_1 IP_2 54813 8080 182808054813 3 NA
# 5: 2017-05-11 08:12:28 IP_2 IP_1 8080 54813 182808054813 3 0
# 6: 2017-05-17 08:37:16 IP_1 IP_2 54813 8080 182808054813 3 519888
# 7: 2017-05-02 06:51:16 IP_1 IP_2 50794 8080 182808050794 5 NA
# 8: 2017-05-02 06:51:16 IP_2 IP_1 8080 50794 182808050794 5 0
# 9: 2017-05-08 06:57:08 IP_1 IP_2 50794 8080 182808050794 5 518752
#10: 2017-05-11 06:32:49 IP_1 IP_2 50794 8080 182808050794 5 257741
#11: 2017-05-11 06:32:49 IP_2 IP_1 8080 50794 182808050794 5 0
#12: 2017-05-04 06:52:05 IP_1 IP_2 51896 8080 182808051896 5 NA
#13: 2017-05-04 06:52:05 IP_2 IP_1 8080 51896 182808051896 5 0
#14: 2017-05-04 10:22:26 IP_1 IP_2 51896 8080 182808051896 5 12621
#15: 2017-05-04 10:22:26 IP_2 IP_1 8080 51896 182808051896 5 0
#16: 2017-05-08 07:22:47 IP_1 IP_2 51896 8080 182808051896 5 334821
#17: 2017-05-15 05:56:00 IP_1 IP_2 62744 162 17016262744 3 NA
#18: 2017-05-17 10:41:00 IP_1 IP_2 62744 162 17016262744 3 189900
#19: 2017-05-18 09:31:00 IP_1 IP_2 62744 162 17016262744 3 82200
第二个目标现在是删除那些不完整的流程。现在,为了识别那些“不完整流量”,我们计算它们之间的时间差并将30设置为阈值。棘手的部分来到这里;如果我们只有2行并且它们相隔超过30秒,那么将它们分别过滤掉3行(对于某个键)然后使用时间差异&gt; 30需要 - 或者如果其中两个有>相隔30秒,删除所有3. 然而,当我们有4行或更多行时,我们需要删除时间差的&gt; 30 没有另一对&lt; 30 即可。从上表中,必须基于它们相隔超过30秒的条件来移除行3,6,9,16,17,18,19。查看cdatetime
将阐明哪些是完整的流程。
预期输出,
# cdatetime srcaddr dstaddr srcport dstport key totals time_diff
# 1: 2017-05-12 14:58:32 IP_1 IP_2 54793 8080 182808054793 3 NA
# 2: 2017-05-12 14:58:32 IP_2 IP_1 8080 54793 182808054793 3 0
# 3: 2017-05-11 08:12:28 IP_1 IP_2 54813 8080 182808054813 3 NA
# 4: 2017-05-11 08:12:28 IP_2 IP_1 8080 54813 182808054813 3 0
# 5: 2017-05-02 06:51:16 IP_1 IP_2 50794 8080 182808050794 5 NA
# 6: 2017-05-02 06:51:16 IP_2 IP_1 8080 50794 182808050794 5 0
# 7: 2017-05-11 06:32:49 IP_1 IP_2 50794 8080 182808050794 5 257741
# 8: 2017-05-11 06:32:49 IP_2 IP_1 8080 50794 182808050794 5 0
# 9: 2017-05-04 06:52:05 IP_1 IP_2 51896 8080 182808051896 5 NA
#10: 2017-05-04 06:52:05 IP_2 IP_1 8080 51896 182808051896 5 0
#11: 2017-05-04 10:22:26 IP_1 IP_2 51896 8080 182808051896 5 12621
#12: 2017-05-04 10:22:26 IP_2 IP_1 8080 51896 182808051896 5 0
以上实际生活实例的数据
structure(list(cdatetime = structure(c(1494590312, 1494590312,
1494999436, 1494479548, 1494479548, 1494999436, 1493697076, 1493697076,
1494215828, 1494473569, 1494473569, 1493869925, 1493869925, 1493882546,
1493882546, 1494217367, 1494816960, 1495006860, 1495089060), class = c("POSIXct",
"POSIXt"), tzone = ""), srcaddr = structure(c(1L, 2L, 1L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L), .Label = c("IP_1",
"IP_2"), class = "factor"), dstaddr = structure(c(2L, 1L, 2L,
2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L
), .Label = c("IP_1", "IP_2"), class = "factor"), srcport = c(54793L,
8080L, 54793L, 54813L, 8080L, 54813L, 50794L, 8080L, 50794L,
50794L, 8080L, 51896L, 8080L, 51896L, 8080L, 51896L, 62744L,
62744L, 62744L), dstport = c(8080L, 54793L, 8080L, 8080L, 54813L,
8080L, 8080L, 50794L, 8080L, 8080L, 50794L, 8080L, 51896L, 8080L,
51896L, 8080L, 162L, 162L, 162L), key = c(182808054793, 182808054793,
182808054793, 182808054813, 182808054813, 182808054813, 182808050794,
182808050794, 182808050794, 182808050794, 182808050794, 182808051896,
182808051896, 182808051896, 182808051896, 182808051896, 17016262744,
17016262744, 17016262744), totals = c(3L, 3L, 3L, 3L, 3L, 3L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L), time_diff = c(NA,
0, 409124, NA, 0, 519888, NA, 0, 518752, 257741, 0, NA, 0, 12621,
0, 334821, NA, 189900, 82200)), .Names = c("cdatetime", "srcaddr",
"dstaddr", "srcport", "dstport", "key", "totals", "time_diff"
), row.names = c(NA, -19L), class = c("data.table", "data.frame"
))
以上所有内容都将在大约数据集上运行。 180M行,所以效率是这里的关键词。
答案 0 :(得分:1)
显然这有效:
DT[, keep :=
(!is.na(time_diff) & time_diff < 30) |
shift(time_diff, type="lead", fill = 999) < 30
, by=key]
DT[(keep), !"keep"]
cdatetime srcaddr dstaddr srcport dstport key totals time_diff
1: 2017-05-12 07:58:32 IP_1 IP_2 54793 8080 182808054793 3 NA
2: 2017-05-12 07:58:32 IP_2 IP_1 8080 54793 182808054793 3 0
3: 2017-05-11 01:12:28 IP_1 IP_2 54813 8080 182808054813 3 NA
4: 2017-05-11 01:12:28 IP_2 IP_1 8080 54813 182808054813 3 0
5: 2017-05-01 23:51:16 IP_1 IP_2 50794 8080 182808050794 5 NA
6: 2017-05-01 23:51:16 IP_2 IP_1 8080 50794 182808050794 5 0
7: 2017-05-10 23:32:49 IP_1 IP_2 50794 8080 182808050794 5 257741
8: 2017-05-10 23:32:49 IP_2 IP_1 8080 50794 182808050794 5 0
9: 2017-05-03 23:52:05 IP_1 IP_2 51896 8080 182808051896 5 NA
10: 2017-05-03 23:52:05 IP_2 IP_1 8080 51896 182808051896 5 0
11: 2017-05-04 03:22:26 IP_1 IP_2 51896 8080 182808051896 5 12621
12: 2017-05-04 03:22:26 IP_2 IP_1 8080 51896 182808051896 5 0
我猜想有很多方法可以让它更快,但是澄清它是否正在做OP想要的事情可能更重要(考虑到代码比OP的规则简单得多)。
答案 1 :(得分:1)
这是我建议识别完整流程的对。 (但请注意最后的警告)
library(data.table) # CRAN version 1.10.4 used
# set keys to avoid using order() repeatedly
setkey(DT, key, cdatetime)
# compute time diff again, grouped by key,
# using shift() with default "lag" type and a useful fill value
DT[, time_diff := difftime(cdatetime, shift(cdatetime, fill = -Inf), units = "secs"), by = key]
# now find the begin of a potentially new pair where time_diff > 30 secs
# and count the jumps within each key group using cumsum()
DT[, pair.id := cumsum(time_diff > 30), by = key]
# count the number of partners within each supposedly pair
DT[, count.pairs := .N, .(key, pair.id)]
请注意,在R中,逻辑值可以强制为数字:
as.integer(FALSE)
#[1] 0
as.integer(TRUE)
#[1] 1
因此,每次cumsum()
发现time_diff > 30
为TRUE
时,pair.id
计数都会提前一。否则,即,如果时间差小于30秒,则pair.id
保持不变。这样,识别出在30秒时间窗口内的一对或一组事件。
现在,DT
已经获得了两个额外的列(请注意setkey()
已更改了行的顺序):
cdatetime srcaddr dstaddr srcport dstport key totals time_diff pair.id count.pairs
1: 2017-05-15 04:56:00 IP_1 IP_2 62744 162 17016262744 3 Inf secs 1 1
2: 2017-05-17 09:41:00 IP_1 IP_2 62744 162 17016262744 3 189900 secs 2 1
3: 2017-05-18 08:31:00 IP_1 IP_2 62744 162 17016262744 3 82200 secs 3 1
4: 2017-05-02 05:51:16 IP_1 IP_2 50794 8080 182808050794 5 Inf secs 1 2
5: 2017-05-02 05:51:16 IP_2 IP_1 8080 50794 182808050794 5 0 secs 1 2
6: 2017-05-08 05:57:08 IP_1 IP_2 50794 8080 182808050794 5 518752 secs 2 1
7: 2017-05-11 05:32:49 IP_1 IP_2 50794 8080 182808050794 5 257741 secs 3 2
8: 2017-05-11 05:32:49 IP_2 IP_1 8080 50794 182808050794 5 0 secs 3 2
9: 2017-05-04 05:52:05 IP_1 IP_2 51896 8080 182808051896 5 Inf secs 1 2
10: 2017-05-04 05:52:05 IP_2 IP_1 8080 51896 182808051896 5 0 secs 1 2
11: 2017-05-04 09:22:26 IP_1 IP_2 51896 8080 182808051896 5 12621 secs 2 2
12: 2017-05-04 09:22:26 IP_2 IP_1 8080 51896 182808051896 5 0 secs 2 2
13: 2017-05-08 06:22:47 IP_1 IP_2 51896 8080 182808051896 5 334821 secs 3 1
14: 2017-05-12 13:58:32 IP_1 IP_2 54793 8080 182808054793 3 Inf secs 1 2
15: 2017-05-12 13:58:32 IP_2 IP_1 8080 54793 182808054793 3 0 secs 1 2
16: 2017-05-17 07:37:16 IP_1 IP_2 54793 8080 182808054793 3 409124 secs 2 1
17: 2017-05-11 07:12:28 IP_1 IP_2 54813 8080 182808054813 3 Inf secs 1 2
18: 2017-05-11 07:12:28 IP_2 IP_1 8080 54813 182808054813 3 0 secs 1 2
19: 2017-05-17 07:37:16 IP_1 IP_2 54813 8080 182808054813 3 519888 secs 2 1
现在,必须确定要保留哪些行。在这个小样本中,只有两个成员(对)或单身的群组。
DT[count.pairs > 1]
仅显示对
cdatetime srcaddr dstaddr srcport dstport key totals time_diff pair.id count.pairs
1: 2017-05-02 05:51:16 IP_1 IP_2 50794 8080 182808050794 5 Inf secs 1 2
2: 2017-05-02 05:51:16 IP_2 IP_1 8080 50794 182808050794 5 0 secs 1 2
3: 2017-05-11 05:32:49 IP_1 IP_2 50794 8080 182808050794 5 257741 secs 3 2
4: 2017-05-11 05:32:49 IP_2 IP_1 8080 50794 182808050794 5 0 secs 3 2
5: 2017-05-04 05:52:05 IP_1 IP_2 51896 8080 182808051896 5 Inf secs 1 2
6: 2017-05-04 05:52:05 IP_2 IP_1 8080 51896 182808051896 5 0 secs 1 2
7: 2017-05-04 09:22:26 IP_1 IP_2 51896 8080 182808051896 5 12621 secs 2 2
8: 2017-05-04 09:22:26 IP_2 IP_1 8080 51896 182808051896 5 0 secs 2 2
9: 2017-05-12 13:58:32 IP_1 IP_2 54793 8080 182808054793 3 Inf secs 1 2
10: 2017-05-12 13:58:32 IP_2 IP_1 8080 54793 182808054793 3 0 secs 1 2
11: 2017-05-11 07:12:28 IP_1 IP_2 54813 8080 182808054813 3 Inf secs 1 2
12: 2017-05-11 07:12:28 IP_2 IP_1 8080 54813 182808054813 3 0 secs 1 2
而
DT[count.pairs <= 1]
显示要删除的单曲:
cdatetime srcaddr dstaddr srcport dstport key totals time_diff pair.id count.pairs
1: 2017-05-15 04:56:00 IP_1 IP_2 62744 162 17016262744 3 Inf secs 1 1
2: 2017-05-17 09:41:00 IP_1 IP_2 62744 162 17016262744 3 189900 secs 2 1
3: 2017-05-18 08:31:00 IP_1 IP_2 62744 162 17016262744 3 82200 secs 3 1
4: 2017-05-08 05:57:08 IP_1 IP_2 50794 8080 182808050794 5 518752 secs 2 1
5: 2017-05-08 06:22:47 IP_1 IP_2 51896 8080 182808051896 5 334821 secs 3 1
6: 2017-05-17 07:37:16 IP_1 IP_2 54793 8080 182808054793 3 409124 secs 2 1
7: 2017-05-17 07:37:16 IP_1 IP_2 54813 8080 182808054813 3 519888 secs 2 1
警告在生产数据中可能会发生两个以上具有相同密钥的事件在30秒的时间内出现的情况。有一些方法可以解决这个问题:
DT[count.pairs == 2]
忽略所有其他情况。DT[count.pairs %% 2L == 0L]
(尽管这可能会保留入站连接数不等于出站连接数的情况)可以使用
创建统计信息DT[, .N, count.pairs]
# count.pairs N
#1: 1 7
#2: 2 12
在生产数据集中看到这一点会很有趣。