def test_neural_network():
prediction = neural_network_model(x)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
saver.restore(sess, './model.ckpt')
# more code here
这是我正在处理的代码示例。我已将model.ckpt
保存在与我的文件相同的目录中。
然而,当我运行代码时,我收到一条错误消息:
InvalidArgumentError (see above for traceback): Expected to restore a tensor of type float, got a tensor of type int32 instead: tensor_name = Variable
[[Node: save/RestoreV2 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/RestoreV2/tensor_names, save/RestoreV2/shape_and_slices)]]
答案 0 :(得分:0)
看起来您定义的模型与您保存的模型有某种不同。尝试使用saver = tf.train.import_meta_graph('your_model_name.meta')
而不是在neural_network_model()
中手动构建图表。