我正在试图弄清楚如何将所有属性/方法从一个类继承到另一个类。我基于How to inherit a python base class?,但我无法弄清楚如何让它适用于我的简单示例。在这个例子中,我只想创建一个具有RandomForestClassifier
的所有功能但具有新属性(称为new_attribute
)的新类。在这个方法中,我不能使用原始RandomForestClassifier
的参数,但我可以添加我的新属性。
如何设置它以便我可以使用原始RandomForestClassifier中的所有参数并添加此new_attribute
?
from sklearn.ensemble import RandomForestClassifier
class NewClassifier(RandomForestClassifier):
def __init__(self, new_attribute):
Super(RandomForestClassifier, self).__init__()
self.new_attribute = new_attribute
A = NewClassifier(n_estimators=1, new_attribute=0)
错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-221-686839873f88> in <module>()
5 Super(RandomForestClassifier, self).__init__()
6 self.new_attribute = new_attribute
----> 7 A = NewClassifier(n_estimators=1, new_attribute=0)
TypeError: __init__() got an unexpected keyword argument 'n_estimators'
后见之明: 这是一个构造不良的问题。我得到了上面的代码来处理下面的代码。但是,@ Mseifert在答案中的表现更好:
class NewClassifier(RandomForestClassifier):
def __init__(self, new_attribute, n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None):
RandomForestClassifier.__init__(self, n_estimators, criterion, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, min_impurity_split, bootstrap, oob_score, n_jobs, random_state, verbose, warm_start, class_weight)
self.new_attribute = new_attribute
A = NewClassifier(n_estimators=1, new_attribute=0)
答案 0 :(得分:1)
最简单的方法是接受new_attribute
作为第一个必须参数:
from sklearn.ensemble import RandomForestClassifier
class NewClassifier(RandomForestClassifier):
def __init__(self, *args, **kwargs): # just accept any argument
# Find out what the value of "new_argument is" and remove it either from
# the positional arguments (args) or keyword arguments (kwargs) so that
# the remaining arguments can simply be passed to the super-class.
if args: # if there are positional arguments
new_attribute = args[0]
args = args[1:]
else: # no positional arguments
new_attribute = kwargs.pop('new_attribute')
super().__init__(*args, **kwargs)
self.new_attribute = new_attribute
请注意,它super
不是Super
而您不需要python-3.x中的参数