理解标准化的欧氏距离平方?

时间:2017-06-05 18:04:04

标签: statistics wolfram-mathematica formula algebra euclidean-distance

我试图理解Wolfram documentation中的标准化欧氏距离公式:

1/2*Norm[(u-Mean[u])-(v-Mean[v])]^2/(Norm[u-Mean[u]]^2+Norm[v-Mean[v]]^2)

我在网上搜索了这个公式,但无法找到它。有人可以解释这个公式是如何得出的吗?

2 个答案:

答案 0 :(得分:1)

此公式的含义如下:

  

长度已缩放到的两个向量之间的距离   有单位规范。当向量的方向是时,这是有用的   有意义,但幅度不大。

https://stats.stackexchange.com/questions/136232/definition-of-normalized-euclidean-distance

答案 1 :(得分:0)

除了Luca的评论之外,这里有一个例子,显示“两个向量之间的距离,其长度已被缩放为具有单位范数”。它不等于归一化的平方欧几里德距离。前者在下图中为蓝色。标准欧氏距离为红色。

(* Leave this unevaluated to see symbolic expressions *)
{{a, b, c}, {d, e, f}} = {{1, 2, 3}, {3, 5, 10}};

N[EuclideanDistance[{a, b, c}, {d, e, f}]]
  

7.87401

Norm[{a, b, c} - {d, e, f}]

SquaredEuclideanDistance[{a, b, c}, {d, e, f}]

Norm[{a, b, c} - {d, e, f}]^2

N[NormalizedSquaredEuclideanDistance[{a, b, c}, {d, e, f}]]
  

0.25

(1/2 Norm[({a, b, c} - Mean[{a, b, c}]) - ({d, e, f} - Mean[{d, e, f}])]^2)/
 (Norm[{a, b, c} - Mean[{a, b, c}]]^2 + Norm[{d, e, f} - Mean[{d, e, f}]]^2)

1/2 Variance[{a, b, c} - {d, e, f}]/(Variance[{a, b, c}] + Variance[{d, e, f}])

{a2, b2, c2} = Normalize[{a, b, c}];
{d2, e2, f2} = Normalize[{d, e, f}];

N[EuclideanDistance[{a2, b2, c2}, {d2, e2, f2}]]
  

0.120185

Graphics3D[{Line[{{0, 0, 0}, {1, 2, 3}}], 
  Line[{{0, 0, 0}, {3, 5, 10}}],
  Red, Thick, Line[{{1, 2, 3}, {3, 5, 10}}],
  Blue, Line[{{a2, b2, c2}, {d2, e2, f2}}]},
 Axes -> True, AspectRatio -> 1, 
 PlotRange -> {{0, 10}, {0, 10}, {0, 10}},
 AxesLabel -> Map[Style[#, Bold, 16] &, {"x", "y", "z"}],
 AxesEdge -> {{-1, -1}, {-1, -1}, {-1, -1}},
 ViewPoint -> {1.275, -2.433, -1.975}, 
 ViewVertical -> {0.551, -0.778, 0.302}]

enter image description here