这是tensorflow
中名为tf.space_to_depth
的函数。在Tensorflow源代码中实现此功能对我来说非常困难。你能帮我用numpy
来实现吗?
以下是一些可视化此功能的代码。顺便说一句,在所有事情之前,最好提一下,tensorflow功能的输入应该有输入形状:[batch, height, width, depth]
假设这段代码。首先,我们需要定义一个张量:
norm = tf.reshape(tf.range(0,72),(1,6,6,2))
以下是深度1(norm[0,:,:,0]
)的值:
[[ 0, 2, 4, 6, 8, 10],
[12, 14, 16, 18, 20, 22],
[24, 26, 28, 30, 32, 34],
[36, 38, 40, 42, 44, 46],
[48, 50, 52, 54, 56, 58],
[60, 62, 64, 66, 68, 70]]
这是深度2(norm[0,:,:,1]
)的值:
[[ 1, 3, 5, 7, 9, 11],
[13, 15, 17, 19, 21, 23],
[25, 27, 29, 31, 33, 35],
[37, 39, 41, 43, 45, 47],
[49, 51, 53, 55, 57, 59],
[61, 63, 65, 67, 69, 71]]
在下一步中,我想应用tf.space_to_depth
函数,这里是:
trans = tf.space_to_depth(norm,2)
输出形状为:(1,3,3,8),这是此函数的输出:
trans[0,:,:,0]
[[ 0, 4, 8],
[24, 28, 32],
[48, 52, 56]]
trans[0,:,:,1]
[[ 1, 5, 9],
[25, 29, 33],
[49, 53, 57]]
trans[0,:,:,2]
[[ 2, 6, 10],
[26, 30, 34],
[50, 54, 58]]
trans[0,:,:,3]
[[ 3, 7, 11],
[27, 31, 35],
[51, 55, 59]]
trans[0,:,:,4]
[[12, 16, 20],
[36, 40, 44],
[60, 64, 68]]
trans[0,:,:,5]
[[13, 17, 21],
[37, 41, 45],
[61, 65, 69]]
trans[0,:,:,6]
[[14, 18, 22],
[38, 42, 46],
[62, 66, 70]]
trans[0,:,:,7]
[[15, 19, 23],
[39, 43, 47],
[63, 67, 71]]
有人可以帮助我如何在numpy中实现这个函数的矢量化版本?
提前感谢任何回复!
答案 0 :(得分:2)
您可以通过适当调用space_to_depth
和reshape()
函数来实施swapaxes()
:
import numpy as np
def space_to_depth(x, block_size):
x = np.asarray(x)
batch, height, width, depth = x.shape
reduced_height = height // block_size
reduced_width = width // block_size
y = x.reshape(batch, reduced_height, block_size,
reduced_width, block_size, depth)
z = np.swapaxes(y, 2, 3).reshape(batch, reduced_height, reduced_width, -1)
return z
以下是the documentation of tf.space_to_depth的示例:
In [328]: x = [[[[1], [2]],
...: [[3], [4]]]]
...:
In [329]: space_to_depth(x, 2)
Out[329]: array([[[[1, 2, 3, 4]]]])
In [330]: x = [[[[1, 2, 3], [4, 5, 6]],
...: [[7, 8, 9], [10, 11, 12]]]]
...:
In [331]: space_to_depth(x, 2)
Out[331]: array([[[[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]])
In [332]: x = [[[[1], [2], [5], [6]],
...: [[3], [4], [7], [8]],
...: [[9], [10], [13], [14]],
...: [[11], [12], [15], [16]]]]
...:
In [333]: space_to_depth(x, 2)
Out[333]:
array([[[[ 1, 2, 3, 4],
[ 5, 6, 7, 8]],
[[ 9, 10, 11, 12],
[13, 14, 15, 16]]]])
这是你的榜样:
In [334]: norm = np.arange(72).reshape(1, 6, 6, 2)
In [335]: trans = space_to_depth(norm, 2)
In [336]: trans[0, :, :, 0]
Out[336]:
array([[ 0, 4, 8],
[24, 28, 32],
[48, 52, 56]])
In [337]: trans[0, :, :, 1]
Out[337]:
array([[ 1, 5, 9],
[25, 29, 33],
[49, 53, 57]])
In [338]: trans[0, :, :, 7]
Out[338]:
array([[15, 19, 23],
[39, 43, 47],
[63, 67, 71]])