在R中使用formattable时打印空白而不是NA

时间:2017-06-03 19:20:51

标签: r formattable

考虑示例data.frame

df <- data.frame(
  id = 1:4,
  name = c("Bob", "Ashley", "James", "David"), 
  age = c(48, NA, 40, 28),
  test1_score = c(18.9, 19.5, NA, 12.9),
  stringsAsFactors = FALSE)

我使用R包格式表制作漂亮的表格。

library(formattable)
formattable(df, list(
age = color_tile("white", "orange"),
test1_score = color_bar("pink", 'proportion', 0.2)
))

过去,NA会自动不打印,而是打印出空白。看起来这不再是默认设置,但我还是想为NA打印一个空白。像这样替换NA有效:

df[is.na(df)]=''
formattable(df, list(
  age = color_tile("white", "orange"),
  test1_score = color_bar("pink", 'proportion', 0.2)
))

enter image description here

但是,如果我尝试格式化其中一列以强制它有2个小数位,那么麻烦的NA会返回:

df$age = digits(df$age, digits=2)
formattable(df, list(
age = color_tile("white", "orange"),
test1_score = color_bar("pink", 'proportion', 0.2)
))

enter image description here

如果我再次移除NA,则NA会消失,但小数位也是如此

df[is.na(df)] = ''
formattable(df, list(
age = color_tile("white", "orange"),
test1_score = color_bar("pink", 'proportion', 0.2)
))

enter image description here

我认为原因是数字会将df$age转换为formattable numeric个对象并创建NAdf[is.na(df)] = ''df$age转换为formattable character object:

> df$age = digits(df$age, digits=2)
> df$age
[1] 48.00  NA   40.00 28.00
> class(df$age)
[1] "formattable" "numeric"    
> df[is.na(df)] = ''
> df$age
[1] "48" "  " "40" "28"
> class(df$age)
[1] "formattable" "character" 

关于解决方案的任何想法?

最终,我还想在过滤的data.frame中使用它,我使用Filtering dataframes with formattable中的代码来确保在过滤data.frame时颜色标度保持不变:

df$age = digits(df$age, digits=2)
  subset_df <- function(m) {
    formattable(df[m, ], list(
      age = x ~ color_tile("white", "orange")(df$age)[m],
      test1_score = x ~ color_bar("pink", 'proportion', 0.2)(df$test1_score)[m],
      test2_score = x ~ color_bar("pink", 'proportion', 0.2)(df$test2_score)[m]
    ))
  }

subset_df(1:3)

enter image description here

但问题似乎与此代码无关。

2 个答案:

答案 0 :(得分:1)

您可以使用sprintf函数将数字列格式化为具有所需小数位数的字符串。在下面的代码中,sprintfNA转换为字符串"NA",然后我们将其转换为空字符串。

# Function to convert numeric values to strings with a given number of 
#  decimal places, and convert NA to empty string
fnc = function(var, decimal.places) {
  var = sprintf(paste0("%1.",decimal.places,"f"), var)
  var[var=="NA"] = ""
  var
}

# Select the columns we want to reformat
vars = c('age', 'test1_score')

# Apply the function to the desired columns with the desired number of decimal places
df[ , vars] = mapply(fnc, df[ ,vars], 2:3)

formattable(df, list(
  age = color_tile("white", "orange"),
  test1_score = color_bar("pink", 'proportion', 0.2)
))

enter image description here

答案 1 :(得分:0)

另一个对我有用的解决方案是使用str_remove_all()。由于color_bar()中的formattable会将HTML输出作为字符输出,因此您只需删除字符串“ NA”即可。

请注意,如果您碰巧在其他任何地方有NA,则有可能使HTML混乱。另外值得注意的是,我在your_var周围包裹了一个百分比函数。 这是将数字转换为百分比并应用color_bar()的最佳方法。代码如下:

df %>%
    # First mutate w/color_bar()
    mutate(your_var= color_bar("green", na.rm=T)(percent(your_var, digits = 1))) %>% 
    # Second mutate
    mutate(your_var = str_remove_all(your_var, "NA"))

第一个变异的输出

<span style="display: inline-block; direction: rtl; border-radius: 4px; padding-right: 2px; background-color: #00a657">NA</span>

第二个变异的输出

<span style="display: inline-block; direction: rtl; border-radius: 4px; padding-right: 2px; background-color: #00a657"></span>

此外,以防万一还没有看到的人:Awesome tables in HTML - Integration with formattable