**评论后添加的样本数据**
我有什么:
pmts <- data.frame(stringsAsFactors=FALSE,
name = c("johndoe", "johndoe", "janedoe", "foo", "foo", "foo"),
pmt_amount = c(550L, 550L, 995L, 375L, 375L, 375L),
pmt_date = c("9/1/16", "11/1/16", "12/15/16", "1/5/17", "3/5/17", "5/5/17")
)
#> name pmt_amount pmt_date
#> 1 johndoe 550 9/1/16
#> 2 johndoe 550 11/1/16
#> 3 janedoe 995 12/15/16
#> 4 foo 375 1/5/17
#> 5 foo 375 3/5/17
#> 6 foo 375 5/5/17
我希望实现的目标:
read.table(header = T, text =
"name pmt_amount first_pmt second_pmt third_pmt
johndoe 550 9/1/16 11/1/16 NA
janedoe 995 12/15/16 NA NA
foo 375 1/5/17 3/5/17 5/5/17"
)
#> name pmt_amount first_pmt second_pmt third_pmt
#> 1 johndoe 550 9/1/16 11/1/16 <NA>
#> 2 janedoe 995 12/15/16 <NA> <NA>
#> 3 foo 375 1/5/17 3/5/17 5/5/17
**更新结束**
我有一个大型数据集,其中包含不同产品的付款信息。其中一些产品具有全额付款选项以及双付和三付选项。我需要创建First_Payment,Second_Payment和Third_Payment字段,并且如果只有一次或两次付款,则会在相应字段中填充NA。
我尝试过几个选项,到目前为止我做的最好的解决方法是:
pmts %>%
group_by(Email, Name, Amount, Form.Title) %>%
summarise(First_Payment = min(Payment.Date),
Second_Payment = median(Payment.Date),
Last_Payment = max(Payment.Date)) -> pmts
这显然不是理想的,因为构成2付费计划的付款日期,我必须指示最终用户忽略此字段,只看第1和第3个字段。
我还尝试用这样的部分排序进行总结:
n <- length(pmts$Payment.Date)
sort(pmts$Payment.Date,partial=n-1)[n-1]
但是,如果此人没有三次付款,则需要从整个数据集中获取n-1日期并应用于所有其他字段。
理想情况下,我会这样做,如果它是全额付款,则First_Payment字段将具有日期,而第二/第三字段将表示NA。 2-pay将有第1和第2个日期,第3个字段将表示NA。最后3个工资将有3个日期。
这里的最终用户不是超级数据,所以我试图尽可能容易地解释它。任何建议都将受到极大的赞赏。谢谢!
答案 0 :(得分:1)
您可以使用tidyr
。
library(dplyr)
library(tidyr)
pmts <- tibble(
name = c("johndoe", "johndoe", "janedoe", "foo", "foo", "foo"),
pmt_amount = c(550L, 550L, 995L, 375L, 375L, 375L),
pmt_date = lubridate::mdy(c("9/1/16", "11/1/16", "12/15/16", "1/5/17", "3/5/17", "5/5/17"))
)
pmts
#> # A tibble: 6 x 3
#> name pmt_amount pmt_date
#> <chr> <int> <date>
#> 1 johndoe 550 2016-09-01
#> 2 johndoe 550 2016-11-01
#> 3 janedoe 995 2016-12-15
#> 4 foo 375 2017-01-05
#> 5 foo 375 2017-03-05
#> 6 foo 375 2017-05-05
pmts_long <- pmts %>%
group_by(name) %>%
arrange(name, pmt_date) %>%
mutate(pmt = row_number()) %>%
ungroup() %>%
complete(name, nesting(pmt)) %>%
fill(pmt_amount, .direction = "down")
pmts_long
#> # A tibble: 9 x 4
#> name pmt pmt_amount pmt_date
#> <chr> <int> <int> <date>
#> 1 foo 1 375 2017-01-05
#> 2 foo 2 375 2017-03-05
#> 3 foo 3 375 2017-05-05
#> 4 janedoe 1 995 2016-12-15
#> 5 janedoe 2 995 NA
#> 6 janedoe 3 995 NA
#> 7 johndoe 1 550 2016-09-01
#> 8 johndoe 2 550 2016-11-01
#> 9 johndoe 3 550 NA
pmts_wide <- pmts_long %>%
gather("key", "val", -name, -pmt_amount, -pmt) %>%
unite(pmt_number, key, pmt) %>%
spread(pmt_number, val)
pmts_wide
#> # A tibble: 3 x 5
#> name pmt_amount pmt_date_1 pmt_date_2 pmt_date_3
#> * <chr> <int> <date> <date> <date>
#> 1 foo 375 2017-01-05 2017-03-05 2017-05-05
#> 2 janedoe 995 2016-12-15 NA NA
#> 3 johndoe 550 2016-09-01 2016-11-01 NA
答案 1 :(得分:1)
使用data.table这是一个简单的单行
library(data.table) #v1.9.8+
dcast(setDT(pmts), name + pmt_amount ~ rowid(pmt_amount))
# Using 'pmt_date' as value column. Use 'value.var' to override
# name pmt_amount 1 2 3
# 1: foo 375 1/5/17 3/5/17 5/5/17
# 2: janedoe 995 12/15/16 NA NA
# 3: johndoe 550 9/1/16 11/1/16 NA
dcast
从long转换为wide,它接受表达式。 rowid
只是按pmt_amount
添加行计数器。