我的数据框
class_lst = ["B","A","C","Z","H","K","O","W","L","R","M","Y","Q","X","X","G","G","G","G","G"]
value_lst = [1,0.999986,1,0.999358,0.999906,0.995292,0.998481,0.388307,0.99608,0.99829,1,0.087298,1,1,0.999993,1,1,1,1,1]
df =pd.DataFrame(
{'class': class_lst,
'val': value_lst
})
任何时间间隔的' val'在范围
ranges = np.arange(0.0, 1.1, 0.1)
我想得到' val'项目如下:
class range frequency
A (0, 0.10] 0
A (0.10, 0.20] 0
A (0.20, 0.30] 0
...
A (0.90, 100] 1
G (0, 0.10] 0
G (0.10, 0.20] 0
G (0.20, 0.30] 0
...
G (0.80, 0.90] 0
G (0.90, 100] 5
...
我试过
df.groupby(pd.cut(df.val, ranges)).count()
但输出看起来像
class val
val
(0, 0.1] 1 1
(0.1, 0.2] 0 0
(0.2, 0.3] 0 0
(0.3, 0.4] 1 1
(0.4, 0.5] 0 0
(0.5, 0.6] 0 0
(0.6, 0.7] 0 0
(0.7, 0.8] 0 0
(0.8, 0.9] 0 0
(0.9, 1] 18 18
并且与预期的
不匹配答案 0 :(得分:2)
这可能是一个好的开始:
df["range"] = pd.cut(df['val'], ranges)
class val range
0 B 1.000000 (0.9, 1.0]
1 A 0.999986 (0.9, 1.0]
2 C 1.000000 (0.9, 1.0]
3 Z 0.999358 (0.9, 1.0]
4 H 0.999906 (0.9, 1.0]
5 K 0.995292 (0.9, 1.0]
6 O 0.998481 (0.9, 1.0]
7 W 0.388307 (0.3, 0.4]
8 L 0.996080 (0.9, 1.0]
9 R 0.998290 (0.9, 1.0]
10 M 1.000000 (0.9, 1.0]
11 Y 0.087298 (0.0, 0.1]
12 Q 1.000000 (0.9, 1.0]
13 X 1.000000 (0.9, 1.0]
14 X 0.999993 (0.9, 1.0]
15 G 1.000000 (0.9, 1.0]
16 G 1.000000 (0.9, 1.0]
17 G 1.000000 (0.9, 1.0]
18 G 1.000000 (0.9, 1.0]
19 G 1.000000 (0.9, 1.0]
然后
df.groupby(["class", "range"]).size()
class range
A (0.9, 1.0] 1
B (0.9, 1.0] 1
C (0.9, 1.0] 1
G (0.9, 1.0] 5
H (0.9, 1.0] 1
K (0.9, 1.0] 1
L (0.9, 1.0] 1
M (0.9, 1.0] 1
O (0.9, 1.0] 1
Q (0.9, 1.0] 1
R (0.9, 1.0] 1
W (0.3, 0.4] 1
X (0.9, 1.0] 2
Y (0.0, 0.1] 1
Z (0.9, 1.0] 1
这将为每个班级及其频率提供正确的箱柜。