如何在tf.python_io.tf_record_iterator中为纪元设置一个数字

时间:2017-06-02 14:42:39

标签: tensorflow iterator

我试图多次迭代我的数据集。我使用了tf.python_io.tf_record_iterator。但是,我用它如下:

record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_filename)
for z in range(4):
    for k, string_record in enumerate(record_iterator):
    ....

因此,外部循环没有效果,迭代在内部循环完成迭代数据集之后完成。

非常感谢任何帮助!!

1 个答案:

答案 0 :(得分:0)

最后,新的tensorflow Dataset api编码了这个功能。完整文档位于:http://requirejs.org/docs/node.html

长话短说,这个新的api将使最终用户能够使用for循环或使用repeat()类中的Dataset多次迭代他的数据库。

以下是有关我如何使用此API的完整代码:

import tensorflow as tf
import numpy as np
import time
import cv2

num_epoch = 2
batch_size = 8 # This is set to 8 since
num_threads = 9
common = "C:/Users/user/PycharmProjects/AffectiveComputingNew/database/"
filenames = [(common + "train_1_db.tfrecords"), (common + "train_2_db.tfrecords"), (common + "train_3_db.tfrecords"),
     (common + "train_4_db.tfrecords"), (common + "train_5_db.tfrecords"), (common + "train_6_db.tfrecords"),
     (common + "train_7_db.tfrecords"), (common + "train_8_db.tfrecords"), (common + "train_9_db.tfrecords")]

# Transforms a scalar string `example_proto` into a pair of a scalar string and
# a scalar integer, representing an image and its label, respectively.
def _parse_function(example_proto):
    features = {
        'height': tf.FixedLenFeature([], tf.int64),
        'width': tf.FixedLenFeature([], tf.int64),
        'image_raw': tf.FixedLenFeature([], tf.string),
        'features': tf.FixedLenFeature([432], tf.float32)
    }

    parsed_features = tf.parse_single_example(example_proto, features)

    # This is how we create one example, that is, extract one example from the database.
    image = tf.decode_raw(parsed_features['image_raw'], tf.uint8)
    # The height and the weights are used to
    height = tf.cast(parsed_features['height'], tf.int32)
    width = tf.cast(parsed_features['width'], tf.int32)

    # The image is reshaped since when stored as a binary format, it is flattened. Therefore, we need the
    # height and the weight to restore the original image back.
    image = tf.reshape(image, [height, width, 3])

    features = parsed_features['features']

    return features, image

random_features = tf.Variable(tf.zeros([72, 432], tf.float32))
random_images = tf.Variable(tf.zeros([72, 112, 112, 3], tf.uint8))

datasets = []
for _ in filenames:
    datasets.append(tf.contrib.data.TFRecordDataset(_).map(_parse_function))

dataset_ziped = tf.contrib.data.TFRecordDataset.zip((datasets[0], datasets[1], datasets[2], datasets[3],
      datasets[4], datasets[5], datasets[6], datasets[7], datasets[8]))
dataset = dataset_ziped.batch(batch_size)

iterator = dataset.make_initializable_iterator()
next_batch = iterator.get_next() # This has shape: [9, 2]

features = tf.concat((next_batch[0][0], next_batch[1][0], next_batch[2][0], next_batch[3][0],
                      next_batch[4][0], next_batch[5][0], next_batch[6][0], next_batch[7][0],
                      next_batch[8][0]), axis=0)
images = tf.concat((next_batch[0][1], next_batch[1][1], next_batch[2][1], next_batch[3][1],
                    next_batch[4][1], next_batch[5][1], next_batch[6][1], next_batch[7][1],
                    next_batch[8][1]), axis=0)

def get_features(features, images):
    with tf.control_dependencies([tf.assign(random_features, features), tf.assign(random_images, images)]):
        features = tf.reshape(features, shape=[9, 8, 432]) # where 8 * 9 = 72
        features = tf.transpose(features, perm=[1, 0, 2]) # shape becomes: [8, 9, 432]
        features = tf.reshape(features, shape=[72, 432]) # Now frames will be: 1st frame from 1st video, second from second video...

        images = tf.reshape(images, shape=[9, 8, 112, 112, 3])
        images = tf.transpose(images, perm=[1, 0, 2, 3, 4])
        images = tf.reshape(images, shape=[72, 112, 112, 3])
        return features, images

condition1 = tf.equal(tf.shape(features)[0], batch_size * 9)
condition2 = tf.equal(tf.shape(images)[0], batch_size * 9)

condition = tf.logical_and(condition1, condition2)

features, images = tf.cond(condition,
                           lambda: get_features(features, images),
                           lambda: get_features(random_features, random_images))

init_op = tf.global_variables_initializer()

with tf.Session() as sess:
    # Initialize `iterator` with training data.
    sess.run(init_op)

    for _ in range(num_epoch):
        sess.run(iterator.initializer)

        # This while loop will run indefinitly until the end of the first epoch
        while True:
            try:
                lst = []
                features_np, images_np = sess.run([features, images])

                for f in features_np:
                    lst.append(f[0])

                print(lst)
            except tf.errors.OutOfRangeError:
                print('errorrrrr')
                break

有一件事,因为最后检索的内容可能会被截断,这会导致问题(请注意我是如何对功能进行调整大小操作的),因此,我使用的临时variable等于a批处理大小等于my(batch_size * 9)"这对于现在来说并不重要"。