我一直在关注我培训的模型上的TensorFlow for Poets 2 codelab,并创建了一个带有嵌入权重的冻结量化图。它被捕获在一个文件中 - 比如my_quant_graph.pb
。
由于我可以使用该图表来推断TensorFlow Android inference library就好了,我想我可以使用Cloud ML Engine做同样的事情,但它似乎只适用于SavedModel模型。
如何在单个pb文件中简单地转换冻结/量化图形以在ML引擎上使用?
答案 0 :(得分:8)
事实证明,SavedModel为保存的图形提供了一些额外的信息。假设冻结图不需要资产,那么它只需要指定服务签名。
这是我运行的python代码,用于将我的图形转换为Cloud ML引擎接受的格式。注意我只有一对输入/输出张量。
import tensorflow as tf
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants
export_dir = './saved'
graph_pb = 'my_quant_graph.pb'
builder = tf.saved_model.builder.SavedModelBuilder(export_dir)
with tf.gfile.GFile(graph_pb, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
sigs = {}
with tf.Session(graph=tf.Graph()) as sess:
# name="" is important to ensure we don't get spurious prefixing
tf.import_graph_def(graph_def, name="")
g = tf.get_default_graph()
inp = g.get_tensor_by_name("real_A_and_B_images:0")
out = g.get_tensor_by_name("generator/Tanh:0")
sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \
tf.saved_model.signature_def_utils.predict_signature_def(
{"in": inp}, {"out": out})
builder.add_meta_graph_and_variables(sess,
[tag_constants.SERVING],
signature_def_map=sigs)
builder.save()
答案 1 :(得分:0)
有多个输出节点的样本:
# Convert PtotoBuf model to saved_model, format for TF Serving
# https://cloud.google.com/ai-platform/prediction/docs/exporting-savedmodel-for-prediction
import shutil
import tensorflow.compat.v1 as tf
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants
export_dir = './1' # TF Serving supports run different versions of same model. So we put current model to '1' folder.
graph_pb = 'frozen_inference_graph.pb'
# Clear out folder
shutil.rmtree(export_dir, ignore_errors=True)
builder = tf.saved_model.builder.SavedModelBuilder(export_dir)
with tf.io.gfile.GFile(graph_pb, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
sigs = {}
with tf.Session(graph=tf.Graph()) as sess:
# Prepare input and outputs of model
tf.import_graph_def(graph_def, name="")
g = tf.get_default_graph()
image_tensor = g.get_tensor_by_name("image_tensor:0")
num_detections = g.get_tensor_by_name("num_detections:0")
detection_scores = g.get_tensor_by_name("detection_scores:0")
detection_boxes = g.get_tensor_by_name("detection_boxes:0")
detection_classes = g.get_tensor_by_name("detection_classes:0")
sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \
tf.saved_model.signature_def_utils.predict_signature_def(
{"input_image": image_tensor},
{ "num_detections": num_detections,
"detection_scores": detection_scores,
"detection_boxes": detection_boxes,
"detection_classes": detection_classes})
builder.add_meta_graph_and_variables(sess,
[tag_constants.SERVING],
signature_def_map=sigs)
builder.save()