在hbase中添加多个列键和值过滤器

时间:2017-06-02 10:55:29

标签: hbase

我对hbase很新。我们需要获取表的某些数据。以下是样本数据集。我被困在创建过滤器,这对我来说似乎有点复杂。在查询中,我将获得value1,我需要将其与ID1 CQ的值进行比较,另一个值为value2,我需要将其与ID2 CQ的值进行比较。之后有多个带有列jj_的条目,这里我需要先获取以jj_开头的所有列的最新时间,然后将value3与最新的jj_ CQ的值进行比较。在sql中,我可以创建像select * ..这样的查询,其中ID1 =''和ID2 =''和ID3 =''。我如何在Hbase中实现同样的目标。任何帮助都会受到高度关注。

ROW                                  COLUMN+CELL                                                                                              
 1                                   column=d:ID1, timestamp=1496273604085, value=5678                                                      
 1                                   column=d:ID2, timestamp=1496273604085, value=Jan                                                      
 1                                   column=d:data, timestamp=1496273604085, value=TestData1                               
 1                                   column=d:jj_01/01/2017 01:37:56 AM, timestamp=1496273604085, value=11345601/01/2017 01:37:56 AM          
 2                                   column=d:ID1, timestamp=1496273604105, value=5678                                                      
 2                                   column=d:ID2, timestamp=1496273604105, value=Jan                                                      
 2                                   column=d:data, timestamp=1496273604105, value=TestData2                              
 2                                   column=d:jj_01/02/2017 10:37:56 AM, timestamp=1496273604105, value=11345601/02/2017 10:37:56 AM          
 2                                   column=d:jj_01/02/2017 11:37:56 PM, timestamp=1496273604105, value=11345601/02/2017 11:37:56 PM          
 3                                   column=d:ID1, timestamp=1496273604112, value=5678                                                      
 3                                   column=d:ID2, timestamp=1496273604112, value=Jan,Feb                                                  
 3                                   column=d:data, timestamp=1496273604112, value=TestData3                            
 3                                   column=d:jj_02/01/2017 11:37:56 AM, timestamp=1496273604112, value=11345602/01/2017 11:37:56 AM          
 4                                   column=d:ID1, timestamp=1496273604124, value=5678,1234                                                 
 4                                   column=d:ID2, timestamp=1496273604124, value=Jan,Dec                                                  
 4                                   column=d:data, timestamp=1496273604124, value=TestData4                                    
 4                                   column=d:jj_02/02/2017 09:37:56 PM, timestamp=1496273604124, value=11345602/02/2017 09:37:56 PM          
 4                                   column=d:jj_02/02/2017 11:37:56 AM, timestamp=1496273604124, value=11345602/02/2017 11:37:56 AM          
 5                                   column=d:ID1, timestamp=1496273604133, value=5678,1234                                                 
 5                                   column=d:ID2, timestamp=1496273604133, value=Jan                                                      
 5                                   column=d:data, timestamp=1496273604133, value=TestData5                         
 5                                   column=d:jj_01/05/2017 11:37:56 AM, timestamp=1496273604133, value=11345601/05/2017 11:37:56 AM          
 5                                   column=d:jj_01/06/2017 09:37:56 PM, timestamp=1496273604133, value=11345601/06/2017 09:37:56 PM          
 6                                   column=d:ID1, timestamp=1496273604138, value=5678                                                      
 6                                   column=d:ID2, timestamp=1496273604138, value=Dec                                                      
 6                                   column=d:data, timestamp=1496273604138, value=TestData6                          
 6                                   column=d:jj_02/02/2017 09:37:56 AM, timestamp=1496273604138, value=11345602/02/2017 09:37:56 AM          
 7                                   column=d:ID1, timestamp=1496273604148, value=5678                                                      
 7                                   column=d:ID2, timestamp=1496273604148, value=Jan                                                      
 7                                   column=d:data, timestamp=1496273604148, value=TestData7                                
 7                                   column=d:jj_02/03/2017 09:37:56 AM, timestamp=1496273604148, value=11345602/03/2017 09:37:56 AM 

1 个答案:

答案 0 :(得分:0)

您可以使用FilterList,例如

scan.setFilter(
  new FilterList(
    FilterList.Operator.MUST_PASS_ALL, 
    new myCustomFilterA(), 
    new myCustomFilterB(),
    ...
  )
);