关于这个问题的正确方法是什么?假设我有ABCD和abcd,输出位应该像AaBbCcDd。
unsigned int JoinBits(unsigned short a, unsigned short b) { }
答案 0 :(得分:4)
#include <stdint.h>
uint32_t JoinBits(uint16_t a, uint16_t b) {
uint32_t result = 0;
for(int8_t ii = 15; ii >= 0; ii--){
result |= (a >> ii) & 1;
result <<= 1;
result |= (b >> ii) & 1;
if(ii != 0){
result <<= 1;
}
}
return result;
}
还在这里对ideone进行了测试:http://ideone.com/lXTqB。
答案 1 :(得分:3)
首先,传播你的位:
unsigned int Spread(unsigned short x)
{
unsigned int result=0;
for (unsigned int i=0; i<15; ++i)
result |= ((x>>i)&1)<<(i*2);
return result;
}
然后将两者合并为函数中的偏移量,如下所示:
Spread(a) | (Spread(b)<<1);
答案 2 :(得分:1)
如果你想要真正的按位交错,最简单和优雅的方式可能就是:
unsigned int JoinBits(unsigned short a, unsigned short b)
{
unsigned int r = 0;
for (int i = 0; i < 16; i++)
r |= ((a & (1 << i)) << i) | ((b & (1 << i)) << (i + 1));
return r;
}
答案 3 :(得分:0)
没有任何数学技巧可以利用,我的第一个天真的解决方案是使用像数据结构这样的BitSet来逐位计算输出数。这将循环lg(a)+ lg(b)位,这将给你复杂性。
答案 4 :(得分:0)
一些位操作很可能,但确切的代码取决于平台的byte order。假设little-endian(这是最常见的),你可以这样做:
unsigned int JoinBits(unsigned short x, unsigned short y) {
// x := AB-CD
// y := ab-cd
char bytes[4];
/* Dd */ bytes[0] = ((x & 0x000F) << 4) | (y & 0x000F);
/* Cc */ bytes[1] = (x & 0x00F0) | ((y & 0x00F0) >> 4);
/* Bb */ bytes[2] = ((x & 0x0F00) >> 4) | ((y & 0x0F00) >> 8);
/* Aa */ bytes[3] = ((x & 0xF000) >> 8) | ((y & 0xF000) >> 12);
return *reinterpret_cast<unsigned int *>(bytes);
}
答案 5 :(得分:0)
static const unsigned short MortonTable256[256] =
{
0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115,
0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155,
0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415,
0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115,
0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115,
0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555
};
unsigned short x; // Interleave bits of x and y, so that all of the
unsigned short y; // bits of x are in the even positions and y in the odd;
unsigned int z; // z gets the resulting 32-bit Morton Number.
z = MortonTable256[y >> 8] << 17 |
MortonTable256[x >> 8] << 16 |
MortonTable256[y & 0xFF] << 1 |
MortonTable256[x & 0xFF];