我使用matplotlitb绘制一个盒子图,但有一些缺失值(NaN)。然后我发现它没有在具有NaN值的列中显示框图。 你知道如何解决这个问题吗? 这是代码。
import numpy as np
import matplotlib.pyplot as plt
#==============================================================================
# open data
#==============================================================================
filename='C:\\Users\\liren\\OneDrive\\Data\\DATA in the first field-final\\ks.csv'
AllData=np.genfromtxt(filename,delimiter=";",skip_header=0,dtype='str')
TreatmentCode = AllData[1:,0]
RepCode = AllData[1:,1]
KsData= AllData[1:,2:].astype('float')
DepthHeader = AllData[0,2:].astype('float')
TreatmentUnique = np.unique(TreatmentCode)[[3,1,4,2,8,6,9,7,0,5,10],]
nT = TreatmentUnique.size#nT=number of treatments
#nD=number of deepth;nR=numbers of replications;nT=number of treatments;iT=iterms of treatments
nD = 5
nR = 6
KsData_3D = np.zeros((nT,nD,nR))
for iT in range(nT):
Treatment = TreatmentUnique[iT]
TreatmentFilter = TreatmentCode == Treatment
KsData_Filtered = KsData[TreatmentFilter,:]
KsData_3D[iT,:,:] = KsData_Filtered.transpose()iD = 4
fig=plt.figure()
ax = fig.add_subplot(111)
plt.boxplot(KsData_3D[:,iD,:].transpose())
ax.set_xticks(range(1,nT+1))
ax.set_xticklabels(TreatmentUnique)
ax.set_title(DepthHeader[iD])
这是最后的数字,有些治疗方法没有方便。
答案 0 :(得分:12)
您可以先从数据中删除NaN
,然后绘制已过滤的数据。
为此,您可以先使用np.isnan(data)
找到NaN
,然后使用~
operator执行该布尔数组的按位反转。使用它来索引数据数组,并筛选出NaN
。
filtered_data = data[~np.isnan(data)]
在一个完整的例子中(改编自here)
import matplotlib.pyplot as plt
import numpy as np
# fake up some data
spread = np.random.rand(50) * 100
center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low), 0)
# Add a NaN
data[40] = np.NaN
# Filter data using np.isnan
filtered_data = data[~np.isnan(data)]
# basic plot
plt.boxplot(filtered_data)
plt.show()
对于2D数据,您不能简单地使用上面的掩码,因为那时数据数组的每列将具有不同的长度。相反,我们可以创建一个列表,列表中的每个项目都是数据数组每列的过滤数据。
列表理解可以在一行中完成:[d[m] for d, m in zip(data.T, mask.T)]
import matplotlib.pyplot as plt
import numpy as np
# fake up some data
spread = np.random.rand(50) * 100
center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low), 0)
data = np.column_stack((data, data * 2., data + 20.))
# Add a NaN
data[30, 0] = np.NaN
data[20, 1] = np.NaN
# Filter data using np.isnan
mask = ~np.isnan(data)
filtered_data = [d[m] for d, m in zip(data.T, mask.T)]
# basic plot
plt.boxplot(filtered_data)
plt.show()
我会把它作为练习留给读者将其扩展到3个或更多维度,但你明白了。