我使用的是NGram
Transformer
,而是CountVectorizerModel
。
我需要能够创建一个复合变换器,以便以后再使用。
我能够通过制作List<Transformer>
并循环浏览所有元素来实现这一目标,但我想知道是否可以使用其他Transformer
来创建Transformer
答案 0 :(得分:2)
这实际上非常简单,您只需要使用Pipeline
API来创建管道:
import java.util.Arrays;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.feature.CountVectorizer;
import org.apache.spark.ml.feature.NGram;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
List<Row> data = Arrays.asList(
RowFactory.create(0, "Hi I heard about Spark"),
RowFactory.create(1, "I wish Java could use case classes"),
RowFactory.create(2, "Logistic,regression,models,are,neat")
);
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
});
现在让我们定义我们的管道(tokenizer,ngram transformer和count vectorizer):
Tokenizer tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words");
NGram ngramTransformer = NGram().setN(2).setInputCol("words").setOutputCol("ngrams");
CountVectorizer countVectorizer = new CountVectorizer()
.setInputCol("ngrams")
.setOutputCol("feature")
.setVocabSize(3)
.setMinDF(2);
我们现在可以创建管道并对其进行训练:
Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[]{tokenizer, ngramTransformer, countVectorizer});
// Fit the pipeline to training documents.
PipelineModel model = pipeline.fit(sentenceDataFrame);
我希望这会有所帮助