Pathos多处理pool.map不尊重recurse = True

时间:2017-05-31 17:52:45

标签: python multiprocessing dill pathos

当我尝试在sympy.lambdify的lambdified函数上使用pool.map时,dill会抛出一个错误:

In [1]: import sympy as sy

In [2]: from sympy.abc import x

In [3]: f = sy.lambdify(x,x+x,'numpy')

In [4]: from pathos.multiprocessing import ProcessingPool as Pool

In [5]: p = Pool()

In [6]: p.map(f,range(10))
---------------------------------------------------------------------------
PicklingError                             Traceback (most recent call last)
<ipython-input-6-de5021fd7170> in <module>()
----> 1 p.map(f,range(10))

/usr/local/lib/python3.5/dist-packages/pathos/multiprocessing.py in map(self, f, *args, **kwds)
    134         AbstractWorkerPool._AbstractWorkerPool__map(self, f, *args, **kwds)
    135         _pool = self._serve()
--> 136         return _pool.map(star(f), zip(*args)) # chunksize
    137     map.__doc__ = AbstractWorkerPool.map.__doc__
    138     def imap(self, f, *args, **kwds):

/usr/local/lib/python3.5/dist-packages/multiprocess/pool.py in map(self, func, iterable, chunksize)
    258         in a list that is returned.
    259         '''
--> 260         return self._map_async(func, iterable, mapstar, chunksize).get()
    261 
    262     def starmap(self, func, iterable, chunksize=None):

/usr/local/lib/python3.5/dist-packages/multiprocess/pool.py in get(self, timeout)
    606             return self._value
    607         else:
--> 608             raise self._value
    609 
    610     def _set(self, i, obj):

/usr/local/lib/python3.5/dist-packages/multiprocess/pool.py in _handle_tasks(taskqueue, put, outqueue, pool, cache)
    383                         break
    384                     try:
--> 385                         put(task)
    386                     except Exception as e:
    387                         job, ind = task[:2]

/usr/local/lib/python3.5/dist-packages/multiprocess/connection.py in send(self, obj)
    207         self._check_closed()
    208         self._check_writable()
--> 209         self._send_bytes(ForkingPickler.dumps(obj))
    210 
    211     def recv_bytes(self, maxlength=None):

/usr/local/lib/python3.5/dist-packages/multiprocess/reduction.py in dumps(cls, obj, protocol)
     51     def dumps(cls, obj, protocol=None):
     52         buf = io.BytesIO()
---> 53         cls(buf, protocol).dump(obj)
     54         return buf.getbuffer()
     55 

/usr/lib/python3.5/pickle.py in dump(self, obj)
    406         if self.proto >= 4:
    407             self.framer.start_framing()
--> 408         self.save(obj)
    409         self.write(STOP)
    410         self.framer.end_framing()

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/lib/python3.5/pickle.py in save_tuple(self, obj)
    742         write(MARK)
    743         for element in obj:
--> 744             save(element)
    745 
    746         if id(obj) in memo:

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/lib/python3.5/pickle.py in save_tuple(self, obj)
    727         if n <= 3 and self.proto >= 2:
    728             for element in obj:
--> 729                 save(element)
    730             # Subtle.  Same as in the big comment below.
    731             if id(obj) in memo:

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/lib/python3.5/pickle.py in save_tuple(self, obj)
    727         if n <= 3 and self.proto >= 2:
    728             for element in obj:
--> 729                 save(element)
    730             # Subtle.  Same as in the big comment below.
    731             if id(obj) in memo:

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/local/lib/python3.5/dist-packages/dill/dill.py in save_function(pickler, obj)
   1304                                 globs, obj.__name__,
   1305                                 obj.__defaults__, obj.__closure__,
-> 1306                                 obj.__dict__), obj=obj)
   1307         else:
   1308             pickler.save_reduce(_create_function, (obj.func_code,

/usr/lib/python3.5/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj)
    601         else:
    602             save(func)
--> 603             save(args)
    604             write(REDUCE)
    605 

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/lib/python3.5/pickle.py in save_tuple(self, obj)
    742         write(MARK)
    743         for element in obj:
--> 744             save(element)
    745 
    746         if id(obj) in memo:

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/lib/python3.5/pickle.py in save_tuple(self, obj)
    727         if n <= 3 and self.proto >= 2:
    728             for element in obj:
--> 729                 save(element)
    730             # Subtle.  Same as in the big comment below.
    731             if id(obj) in memo:

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/local/lib/python3.5/dist-packages/dill/dill.py in save_cell(pickler, obj)
   1055 def save_cell(pickler, obj):
   1056     log.info("Ce: %s" % obj)
-> 1057     pickler.save_reduce(_create_cell, (obj.cell_contents,), obj=obj)
   1058     log.info("# Ce")
   1059     return

/usr/lib/python3.5/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj)
    601         else:
    602             save(func)
--> 603             save(args)
    604             write(REDUCE)
    605 

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/lib/python3.5/pickle.py in save_tuple(self, obj)
    727         if n <= 3 and self.proto >= 2:
    728             for element in obj:
--> 729                 save(element)
    730             # Subtle.  Same as in the big comment below.
    731             if id(obj) in memo:

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/local/lib/python3.5/dist-packages/dill/dill.py in save_function(pickler, obj)
   1304                                 globs, obj.__name__,
   1305                                 obj.__defaults__, obj.__closure__,
-> 1306                                 obj.__dict__), obj=obj)
   1307         else:
   1308             pickler.save_reduce(_create_function, (obj.func_code,

/usr/lib/python3.5/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj)
    601         else:
    602             save(func)
--> 603             save(args)
    604             write(REDUCE)
    605 

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/lib/python3.5/pickle.py in save_tuple(self, obj)
    742         write(MARK)
    743         for element in obj:
--> 744             save(element)
    745 
    746         if id(obj) in memo:

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/local/lib/python3.5/dist-packages/dill/dill.py in save_module_dict(pickler, obj)
    839             # we only care about session the first pass thru
    840             pickler._session = False
--> 841         StockPickler.save_dict(pickler, obj)
    842         log.info("# D2")
    843     return

/usr/lib/python3.5/pickle.py in save_dict(self, obj)
    812 
    813         self.memoize(obj)
--> 814         self._batch_setitems(obj.items())
    815 
    816     dispatch[dict] = save_dict

/usr/lib/python3.5/pickle.py in _batch_setitems(self, items)
    838                 for k, v in tmp:
    839                     save(k)
--> 840                     save(v)
    841                 write(SETITEMS)
    842             elif n:

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    518 
    519         # Save the reduce() output and finally memoize the object
--> 520         self.save_reduce(obj=obj, *rv)
    521 
    522     def persistent_id(self, obj):

/usr/lib/python3.5/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj)
    622 
    623         if dictitems is not None:
--> 624             self._batch_setitems(dictitems)
    625 
    626         if state is not None:

/usr/lib/python3.5/pickle.py in _batch_setitems(self, items)
    837                 write(MARK)
    838                 for k, v in tmp:
--> 839                     save(k)
    840                     save(v)
    841                 write(SETITEMS)

/usr/lib/python3.5/pickle.py in save(self, obj, save_persistent_id)
    473         f = self.dispatch.get(t)
    474         if f is not None:
--> 475             f(self, obj) # Call unbound method with explicit self
    476             return
    477 

/usr/local/lib/python3.5/dist-packages/dill/dill.py in save_type(pickler, obj)
   1256        #print ("%s\n%s" % (type(obj), obj.__name__))
   1257        #print ("%s\n%s" % (obj.__bases__, obj.__dict__))
-> 1258         StockPickler.save_global(pickler, obj)
   1259         log.info("# T4")
   1260     return

/usr/lib/python3.5/pickle.py in save_global(self, obj, name)
    918                 raise PicklingError(
    919                     "Can't pickle %r: it's not the same object as %s.%s" %
--> 920                     (obj, module_name, name))
    921 
    922         if self.proto >= 2:

PicklingError: Can't pickle <class 'numpy.uint64'>: it's not the same object as numpy.uint64

我在尝试使用dill.dump转储对象时也遇到了此错误,但可以通过dill.settings['recurse'] = True解决。但是,导入dill并设置标志似乎对pool.map():

没有影响
In [7]: import dill

In [8]: dill.settings['recurse'] = True

In [9]: p.map(f,range(10))

... same trace as before ...

PicklingError: Can't pickle <class 'numpy.uint64'>: it's not the same object as numpy.uint64

此外,我希望能够并行化实际的sy.lambdify函数创建:

In [13]: def create_lam(i):
    ...:     return sy.lambdify(x,x+i,'numpy')
    ...: 

In [14]: p.map(create_lam,range(10))
---------------------------------------------------------------------------
MaybeEncodingError                        Traceback (most recent call last)
<ipython-input-14-b894c5b7790a> in <module>()
----> 1 p.map(create_lam,range(10))

/usr/local/lib/python3.5/dist-packages/pathos/multiprocessing.py in map(self, f, *args, **kwds)
    134         AbstractWorkerPool._AbstractWorkerPool__map(self, f, *args, **kwds)
    135         _pool = self._serve()
--> 136         return _pool.map(star(f), zip(*args)) # chunksize
    137     map.__doc__ = AbstractWorkerPool.map.__doc__
    138     def imap(self, f, *args, **kwds):

/usr/local/lib/python3.5/dist-packages/multiprocess/pool.py in map(self, func, iterable, chunksize)
    258         in a list that is returned.
    259         '''
--> 260         return self._map_async(func, iterable, mapstar, chunksize).get()
    261 
    262     def starmap(self, func, iterable, chunksize=None):

/usr/local/lib/python3.5/dist-packages/multiprocess/pool.py in get(self, timeout)
    606             return self._value
    607         else:
--> 608             raise self._value
    609 
    610     def _set(self, i, obj):

MaybeEncodingError: Error sending result: '[<function <lambda> at 0x7fbba9138d90>]'. Reason: 'PicklingError("Can't pickle <class 'numpy.uint64'>: it's not the same object as numpy.uint64",)'

这也失败了,也有类似的错误。

我找到了第一种情况的解决方法:我只是将函数调用包装到非同情的那个:

In [10]: l = lambda i:f(i)

In [11]: p.map(l,range(10))
Out[11]: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

但这在第二种情况下没有用(并行化lambdify)。有没有办法强制pathos兑现dill.settings

0 个答案:

没有答案