我是def select(input_layer):
shape = input_layer.get_shape().as_list()
rel = tf.nn.relu(input_layer)
print (rel)
redu = tf.reduce_sum(rel,3)
print (redu)
location2 = tf.argmax(redu, 1)
print (location2)
sess = tf.InteractiveSession()
I = tf.random_uniform([32, 3, 3, 5], minval = -541, maxval = 23, dtype = tf.float32)
matI, matO = sess.run([I, select(I, 3)])
print(matI, matO)
的新手,我正在尝试获取Tensor中最大值的索引。这是代码:
Tensor("Relu:0", shape=(32, 3, 3, 5), dtype=float32)
Tensor("Sum:0", shape=(32, 3, 3), dtype=float32)
Tensor("ArgMax:0", shape=(32, 3), dtype=int64)
...
这是输出:
argmax
由于Tensor("ArgMax:0") = (32,3)
函数中的维度= 1,因此argmax
的形状。在应用(32,)
之前,有没有办法在不reshape
的情况下获得argmax
输出张量大小= {{1}}?
答案 0 :(得分:1)
您可能不希望输出大小为(32,)
的输出,因为当您沿着多个方向argmax
时,您通常希望所有缩小尺寸的坐标都为最大值。在您的情况下,您希望输出大小为(32,2)
。
你可以像这样做一个二维argmax
:
import numpy as np
import tensorflow as tf
x = np.zeros((10,9,8))
# pick a random position for each batch image that we set to 1
pos = np.stack([np.random.randint(9,size=10), np.random.randint(8,size=10)])
posext = np.concatenate([np.expand_dims([i for i in range(10)], axis=0), pos])
x[tuple(posext)] = 1
a = tf.argmax(tf.reshape(x, [10, -1]), axis=1)
pos2 = tf.stack([a // 8, tf.mod(a, 8)]) # recovered positions, one per batch image
sess = tf.InteractiveSession()
# check that the recovered positions are as expected
assert (pos == pos2.eval()).all(), "it did not work"