我设法将numpy数组写入lmdb,但是solution远非完美,但实际上我的X
只是jpg图像,所以我的问题是如何直接将jpeg文件写入lmdb?< / p>
似乎pycaffe
执行类似的操作,但它使用特定于caffe的Datum
,我需要一些没有依赖关系的通用解决方案。
答案 0 :(得分:1)
这是将图像写为numpy数组并直接编码为jpg的示例。
正如我们所看到的,直接存储jpg在存储方面更有效。
du -sh * 184K temp.db 120K temp_jpg.db
import numpy as np
import lmdb
import cv2
n_samples= 2
def create_random_image(filename):
img= (np.random.rand(100,120,3)*255).astype(np.uint8)
cv2.imwrite(filename,img)
def write_lmdb(filename):
print 'Write lmdb'
lmdb_env = lmdb.open(filename, map_size=int(1e9))
X= cv2.imread('random_img.jpg')
y= np.random.rand(1).astype(np.float32)*10.0
for i in range(n_samples):
with lmdb_env.begin(write=True) as lmdb_txn:
lmdb_txn.put('X_'+str(i), X)
lmdb_txn.put('y_'+str(i), y)
print 'X.shape:',X.shape
print 'y:',y
def read_lmdb(filename):
print 'Read lmdb'
lmdb_env = lmdb.open(filename)
lmdb_txn = lmdb_env.begin()
lmdb_cursor = lmdb_txn.cursor()
#also can do it without iteration via txn.get('key1')?
n_counter=0
with lmdb_env.begin() as lmdb_txn:
with lmdb_txn.cursor() as lmdb_cursor:
for key, value in lmdb_cursor:
print key
if('X' in key):
print 'X.shape', np.fromstring(value, dtype=np.uint8).shape
if('y' in key):
print np.fromstring(value, dtype=np.float32)
n_counter=n_counter+1
print 'n_samples',n_counter
def write_lmdb_jpg(filename):
print 'Write lmdb'
lmdb_env = lmdb.open(filename, map_size=int(1e9))
X= cv2.imread('random_img.jpg')
y= np.random.rand(1).astype(np.float32)*10.0
for i in range(n_samples):
with lmdb_env.begin(write=True) as lmdb_txn:
lmdb_txn.put('X_'+str(i), cv2.imencode('.jpg', X)[1])
lmdb_txn.put('y_'+str(i), y)
print 'X.shape', cv2.imencode('.jpg', X)[1].shape
print 'y:',y
def read_lmdb_jpg(filename):
print 'Read lmdb'
lmdb_env = lmdb.open(filename)
lmdb_txn = lmdb_env.begin()
lmdb_cursor = lmdb_txn.cursor()
#also can do it without iteration via txn.get('key1')?
n_counter=0
with lmdb_env.begin() as lmdb_txn:
with lmdb_txn.cursor() as lmdb_cursor:
for key, value in lmdb_cursor:
print key
if('X' in key):
X_str= np.fromstring(value, dtype=np.uint8)
print 'X_str.shape', X_str.shape
X= cv2.imdecode(X_str, cv2.CV_LOAD_IMAGE_COLOR)
print 'X.shape', X.shape
if('y' in key):
print np.fromstring(value, dtype=np.float32)
n_counter=n_counter+1
print 'n_samples',n_counter
create_random_image('random_img.jpg')
#Write as numpy array
write_lmdb('temp.db')
read_lmdb('temp.db')
#Write as encoded jpg
write_lmdb_jpg('temp_jpg.db')
read_lmdb_jpg('temp_jpg.db')