我是spark scala的新手,想要找到每个部门的最高工资
Dept,Salary
Dept1,1000
Dept2,2000
Dept1,2500
Dept2,1500
Dept1,1700
Dept2,2800
我在下面的代码中实现了
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object MaxSalary {
val sc = new SparkContext(new SparkConf().setAppName("Max Salary").setMaster("local[2]"))
case class Dept(dept_name : String, Salary : Int)
val data = sc.textFile("file:///home/user/Documents/dept.txt").map(_.split(","))
val recs = data.map(r => (r(0), Dept(r(0), r(1).toInt)))
val a = recs.max()???????
})
}
但坚持如何实现group by和max功能。我正在使用配对RDD。
由于
答案 0 :(得分:5)
这可以使用带有以下代码的RDD来完成:
val emp = sc.textFile("file:///home/user/Documents/dept.txt")
.mapPartitionsWithIndex( (idx, row) => if(idx==0) row.drop(1) else row )
.map(x => (x.split(",")(0).toString, x.split(",")(1).toInt))
val maxSal = emp.reduceByKey(math.max(_,_))
应该给你:
Array[(String, Int)] = Array((Dept1,2500), (Dept2,2800))
答案 1 :(得分:1)
如果您使用的是数据集,那么这就是解决方案
case class Dept(dept_name : String, Salary : Int)
val sc = new SparkContext(new SparkConf().setAppName("Max Salary").setMaster("local[2]"))
val sq = new SQLContext(sc)
import sq.implicits._
val file = "resources/ip.csv"
val data = sc.textFile(file).map(_.split(","))
val recs = data.map(r => Dept(r(0), r(1).toInt )).toDS()
recs.groupBy($"dept_name").agg(max("Salary").alias("max_solution")).show()
输出:
+---------+------------+
|dept_name|max_solution|
+---------+------------+
| Dept2| 2800|
| Dept1| 2500|
+---------+------------+