Tensorflow错误?无法将单个已保存变量恢复到使用所有变量保存的体系结构

时间:2017-05-31 01:00:34

标签: python tensorflow

我可以加载架构(“A”)并使用不同的架构(“B”)恢复单个特定的Tensorflow变量,前提是当我保存架构“A”时,我只保存为“B”保存的单个变量”

这有效:

import tensorflow as tf

####################################################
# Architecture "A"
w1 = tf.Variable(tf.linspace(0.0, 0.5, 6), name="w1")
w2 = tf.Variable(tf.linspace(1.0, 5.0, 6), name="w2")

saver = tf.train.Saver({'w1':w1})  #<---------- Save only w1

sess = tf.Session()
sess.run(tf.global_variables_initializer())

saver.save(sess, './my_architecture')

tf.reset_default_graph()
####################################################
# Architecture "B"
w1 = tf.Variable(tf.linspace(10.0, 50.0, 6), name="w1")
w2 = tf.Variable(tf.linspace(100.0, 500.0, 6), name="w2")

saver = tf.train.Saver({'w1':w1})
sess = tf.Session()
sess.run(tf.global_variables_initializer())

saver.save(sess, './my_variable')  

tf.reset_default_graph()
######################################################
with tf.Session() as sess:
  # Loading the model structure from 'my_test_model.meta'
  new_saver = tf.train.import_meta_graph('./my_architecture.meta')

  # Loading the saved "w1" Variable
  new_saver.restore(sess,'./my_variable')

这不起作用;我只将saver = tf.train.Saver({'w1':w1})更改为saver = tf.train.Saver() 8行:

import tensorflow as tf

####################################################
# Architecture "A"
w1 = tf.Variable(tf.linspace(0.0, 0.5, 6), name="w1")
w2 = tf.Variable(tf.linspace(1.0, 5.0, 6), name="w2")

saver = tf.train.Saver()  #<---------- Save everything

sess = tf.Session()
sess.run(tf.global_variables_initializer())

saver.save(sess, './my_architecture')

tf.reset_default_graph()
####################################################
# Architecture "B"
w1 = tf.Variable(tf.linspace(10.0, 50.0, 6), name="w1")
w2 = tf.Variable(tf.linspace(100.0, 500.0, 6), name="w2")

saver = tf.train.Saver({'w1':w1})
sess = tf.Session()
sess.run(tf.global_variables_initializer())

saver.save(sess, './my_variable')  

tf.reset_default_graph()
######################################################
with tf.Session() as sess:
  # Loading the model structure from 'my_test_model.meta'
  new_saver = tf.train.import_meta_graph('./my_architecture.meta')

  # Loading the saved "w1" Variable
  new_saver.restore(sess,'./my_variable')

换句话说,如果在保存“A”的架构时,我保存了所有变量或任何不仅仅是我为架构“B”保存的变量的组合

我收到此错误:

INFO:tensorflow:Restoring parameters from ./my_variable
---------------------------------------------------------------------------
NotFoundError                             Traceback (most recent call last)
/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
   1038     try:
-> 1039       return fn(*args)
   1040     except errors.OpError as e:

/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1020                                  feed_dict, fetch_list, target_list,
-> 1021                                  status, run_metadata)
   1022 

/home/paul/anaconda3/lib/python3.5/contextlib.py in __exit__(self, type, value, traceback)
     65             try:
---> 66                 next(self.gen)
     67             except StopIteration:

/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py in raise_exception_on_not_ok_status()
    465           compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466           pywrap_tensorflow.TF_GetCode(status))
    467   finally:

NotFoundError: Key w2 not found in checkpoint
     [[Node: save/RestoreV2_1 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/RestoreV2_1/tensor_names, save/RestoreV2_1/shape_and_slices)]]
     [[Node: save/RestoreV2/_3 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/gpu:0", send_device="/job:localhost/replica:0/task:0/cpu:0", send_device_incarnation=1, tensor_name="edge_11_save/RestoreV2", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]

During handling of the above exception, another exception occurred:

NotFoundError                             Traceback (most recent call last)
<ipython-input-1-bc6592a722bf> in <module>()
     42 
     43   # Loading the saved "w1" Variable
---> 44   new_saver.restore(sess,'./my_variable')
     45 
     46 #   initialize_uninitialized_vars(sess)

/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/training/saver.py in restore(self, sess, save_path)
   1455     logging.info("Restoring parameters from %s", save_path)
   1456     sess.run(self.saver_def.restore_op_name,
-> 1457              {self.saver_def.filename_tensor_name: save_path})
   1458 
   1459   @staticmethod

/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
    776     try:
    777       result = self._run(None, fetches, feed_dict, options_ptr,
--> 778                          run_metadata_ptr)
    779       if run_metadata:
    780         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    980     if final_fetches or final_targets:
    981       results = self._do_run(handle, final_targets, final_fetches,
--> 982                              feed_dict_string, options, run_metadata)
    983     else:
    984       results = []

/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1030     if handle is None:
   1031       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1032                            target_list, options, run_metadata)
   1033     else:
   1034       return self._do_call(_prun_fn, self._session, handle, feed_dict,

/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
   1050         except KeyError:
   1051           pass
-> 1052       raise type(e)(node_def, op, message)
   1053 
   1054   def _extend_graph(self):

NotFoundError: Key w2 not found in checkpoint
     [[Node: save/RestoreV2_1 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/RestoreV2_1/tensor_names, save/RestoreV2_1/shape_and_slices)]]
     [[Node: save/RestoreV2/_3 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/gpu:0", send_device="/job:localhost/replica:0/task:0/cpu:0", send_device_incarnation=1, tensor_name="edge_11_save/RestoreV2", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]

Caused by op 'save/RestoreV2_1', defined at:
  File "/home/paul/anaconda3/lib/python3.5/runpy.py", line 184, in _run_module_as_main
    "__main__", mod_spec)
  File "/home/paul/anaconda3/lib/python3.5/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py", line 3, in <module>
    app.launch_new_instance()
  File "/home/paul/anaconda3/lib/python3.5/site-packages/traitlets/config/application.py", line 658, in launch_instance
    app.start()
  File "/home/paul/anaconda3/lib/python3.5/site-packages/ipykernel/kernelapp.py", line 474, in start
    ioloop.IOLoop.instance().start()
  File "/home/paul/anaconda3/lib/python3.5/site-packages/zmq/eventloop/ioloop.py", line 177, in start
    super(ZMQIOLoop, self).start()
  File "/home/paul/anaconda3/lib/python3.5/site-packages/tornado/ioloop.py", line 887, in start
    handler_func(fd_obj, events)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "/home/paul/anaconda3/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 276, in dispatcher
    return self.dispatch_shell(stream, msg)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 228, in dispatch_shell
    handler(stream, idents, msg)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 390, in execute_request
    user_expressions, allow_stdin)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/ipykernel/ipkernel.py", line 196, in do_execute
    res = shell.run_cell(code, store_history=store_history, silent=silent)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/ipykernel/zmqshell.py", line 501, in run_cell
    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "/home/paul/anaconda3/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
    if self.run_code(code, result):
  File "/home/paul/anaconda3/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-1-bc6592a722bf>", line 41, in <module>
    new_saver = tf.train.import_meta_graph('./my_architecture.meta')
  File "/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1595, in import_meta_graph
    **kwargs)
  File "/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/framework/meta_graph.py", line 499, in import_scoped_meta_graph
    producer_op_list=producer_op_list)
  File "/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/framework/importer.py", line 308, in import_graph_def
    op_def=op_def)
  File "/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2336, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/home/paul/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1228, in __init__
    self._traceback = _extract_stack()

NotFoundError (see above for traceback): Key w2 not found in checkpoint
     [[Node: save/RestoreV2_1 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/RestoreV2_1/tensor_names, save/RestoreV2_1/shape_and_slices)]]
     [[Node: save/RestoreV2/_3 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/gpu:0", send_device="/job:localhost/replica:0/task:0/cpu:0", send_device_incarnation=1, tensor_name="edge_11_save/RestoreV2", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]

1 个答案:

答案 0 :(得分:1)

默认情况下,通过导入元图创建的Saver将尝试恢复该元图中的所有变量(并会抱怨检查点中缺少的变量)。但是,可以根据另一个检查点过滤这些变量:

import tensorflow as tf

with tf.Graph().as_default():
  ####################################################
  # Architecture "A"
  w1 = tf.Variable(tf.linspace(0.0, 0.5, 6), name="w1")
  w2 = tf.Variable(tf.linspace(1.0, 5.0, 6), name="w2")

  saver = tf.train.Saver()  #<---------- Save everything

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    saver.save(sess, '/tmp/my_architecture')

with tf.Graph().as_default():
  ####################################################
  # Architecture "B"
  w1 = tf.Variable(tf.linspace(10.0, 50.0, 6), name="w1")
  w2 = tf.Variable(tf.linspace(100.0, 500.0, 6), name="w2")

  saver = tf.train.Saver({'w1':w1})
  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver.save(sess, '/tmp/my_variable')

restored_graph = tf.Graph()
with restored_graph.as_default():
  tf.train.import_meta_graph('/tmp/my_architecture.meta')
  vars_to_restore = [
      restored_graph.get_tensor_by_name(var_name + ':0') for var_name, _ 
      in tf.contrib.framework.list_variables('/tmp/my_variable')]
  filtered_saver = tf.train.Saver(var_list=vars_to_restore)
  with tf.Session() as sess:
    # Restore w1 from Architecture "B" into the metagraph from Architecture "A"
    filtered_saver.restore(sess,'/tmp/my_variable')
    print(restored_graph.get_tensor_by_name('w1:0').eval())

打印:

  

[10. 18. 26. 34. 42. 50。]