我们说我有两个结构,Foo
和Bar
:
template<int...>
struct Foo{};
template<unsigned long...>
struct Bar{};
我想创建一个类型特征(称之为match_class
),如果我传递两个Foo<...>
类型或两个Bar<...>
类型,则返回true,但如果我尝试混合它们则返回false:
int main()
{
using f1 = Foo<1, 2, 3>;
using f2 = Foo<1>;
using b1 = Bar<1, 2, 3>;
using b2 = Bar<1>;
static_assert(match_class<f1, f2>::value, "Fail");
static_assert(match_class<b1, b2>::value, "Fail");
static_assert(!match_class<f1, b1>::value, "Fail");
}
对于C ++ 1z(clang 5.0.0和gcc 8.0.0),它足以做到这一点(Demo):
template<class A, class B>
struct match_class : std::false_type{};
template<class T, template<T...> class S, T... U, T... V>
struct match_class<S<U...>, S<V...>> : std::true_type{};
但在C ++ 14中我收到以下错误(相同的编译器 * Demo):
error: class template partial specialization contains a template parameter that cannot be deduced; this partial specialization will never be used [-Wunusable-partial-specialization]
struct match_class<S<U...>, S<V...>> : std::true_type{};
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
note: non-deducible template parameter 'T'
template<class T, template<T...> class S, T... U, T... V>
理想情况下,测试类型特征的语法应保持不变。
次要问题: C ++ 14的行为是否正确? (或者我看到的C ++ 17未指定的行为?)
*请注意,MSVC 19.00.23506具有相同类型的失败Demo
答案 0 :(得分:17)
在C ++ 14中,您无法推断出T
:
template<class T, template<T...> class S, T... U, T... V>
struct match_class<S<U...>, S<V...>> : std::true_type{};
但是在C ++ 17中,你可以。你看到的行为是正确的。
在C ++ 14中,由于无法推断T
,因此需要一种明确提供它的方法。因此,您可能需要类模板本身来指示其非类型模板参数类型:
template <int...> struct Foo { using type = int; };
template <unsigned long...> struct Bar { using type = unsigned long; };
或者有一个外部特征。然后明确写出所有内容 - 两个类模板匹配,如果它们具有相同的非类型模板参数和,那么也按顺序具有相同的类模板:
template <class... Ts> struct make_void { using type = void; };
template <class... Ts> using void_t = typename make_void<Ts...>::type;
template <class T1, class T2, class A, class B>
struct match_class_impl : std::false_type { };
template <class T, template <T...> class S, T... U, T... V>
struct match_class_impl<T, T, S<U...>, S<V...>> : std::true_type{};
template <class A, class B, class=void>
struct match_class : std::false_type { };
template <class A, class B>
struct match_class<A, B, void_t<typename A::type, typename B::type>>
: match_class_impl<typename A::type, typename B::type, A, B>
{ };
这是添加对template auto
的支持的结果。在C ++ 14中,[temp.deduct.type]包含:
无法从非类型模板参数的类型推断出模板类型参数。 [实施例:
template<class T, T i> void f(double a[10][i]); int v[10][20]; f(v); // error: argument for template-parameter T cannot be deduced
-end example]
但在C ++ 17中,now reads:
当从表达式推导出与从属类型声明的非类型模板参数
P
对应的参数的值时,P
类型的模板参数是从值的类型。 [实施例:template<long n> struct A { }; template<typename T> struct C; template<typename T, T n> struct C<A<n>> { using Q = T; }; using R = long; using R = C<A<2>>::Q; // OK; T was deduced to long from the // template argument value in the type A<2>
- 结束示例]
N
类型中的T[N]
类型为std::size_t
。 [实施例:template<typename T> struct S; template<typename T, T n> struct S<int[n]> { using Q = T; }; using V = decltype(sizeof 0); using V = S<int[42]>::Q; // OK; T was deduced to std::size_t from the type int[42]
- 结束示例]
答案 1 :(得分:6)
问题:C ++ 14中的解决方法是什么?
C ++ 14中可能的解决方法基于特征 作为一个最小的,工作的例子(甚至可能是愚蠢的,但它有助于得到这个想法):
#include <type_traits>
#include <utility>
template<int...>
struct Foo{};
template<unsigned long...>
struct Bar{};
template<typename>
struct traits;
template<int... V>
struct traits<Foo<V...>> { using type = Foo<0>; };
template<unsigned long... V>
struct traits<Bar<V...>> { using type = Bar<0>; };
template<typename T, typename U>
constexpr bool match = std::is_same<typename traits<T>::type, typename traits<U>::type>::value;
int main() {
using f1 = Foo<1, 2, 3>;
using f2 = Foo<1>;
using b1 = Bar<1, 2, 3>;
using b2 = Bar<1>;
static_assert(match<f1, f2>, "Fail");
static_assert(match<b1, b2>, "Fail");
static_assert(!match<f1, b1>, "Fail");
}
作为旁注,在C ++ 17中,您可以简化以下内容:
template<template<auto ...> class S, auto... U, auto... V>
struct match_class<S<U...>, S<V...>> : std::true_type{};
关于错误背后的原因,@Barry's answer包含您需要理解的所有内容(像往常一样)。
答案 2 :(得分:1)
这是一个通用的C ++ 14解决方案,它不依赖于手动专用类型特征或扩展Foo
和Bar
。
模板元函数,它获取表示其参数类型的类模板的类型:
namespace detail
{
// Type representing a class template taking any number of non-type template arguments.
template <typename T, template <T...> class U>
struct nontype_template {};
}
// If T is an instantiation of a class template U taking non-type template arguments,
// this has a nested typedef "type" that is a detail::nontype_template representing U.
template <typename T>
struct nontype_template_of {};
// Partial specializations for all of the builtin integral types.
template <template <bool...> class T, bool... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<bool, T>; };
template <template <char...> class T, char... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<char, T>; };
template <template <signed char...> class T, signed char... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<signed char, T>; };
template <template <unsigned char...> class T, unsigned char... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<unsigned char, T>; };
template <template <short...> class T, short... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<short, T>; };
template <template <unsigned short...> class T, unsigned short... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<unsigned short, T>; };
template <template <int...> class T, int... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<int, T>; };
template <template <unsigned int...> class T, unsigned int... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<unsigned int, T>; };
template <template <long...> class T, long... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<long, T>; };
template <template <unsigned long...> class T, unsigned long... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<unsigned long, T>; };
template <template <long long...> class T, long long... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<long long, T>; };
template <template <unsigned long long...> class T, unsigned long long... Vs>
struct nontype_template_of<T<Vs...>> { using type = detail::nontype_template<unsigned long long, T>; };
易于使用的别名模板:
// Alias template for nontype_template_of.
template <typename T>
using nontype_template_of_t = typename nontype_template_of<T>::type;
然后你可以像这样实现你的match_class
特征:
template <class A, class B>
struct match_class : std::is_same<nontype_template_of_t<A>, nontype_template_of_t<B>> {};