我使用的是DeepLabv2 VGG16型号。 我在之前修改过的某个参数train.prototxt中为val添加数据层和精度层,然后我尝试用caffe命令训练,但是我遇到了这个问题:
`I0525 21:59:23.533233 2223 net.cpp:226] pool4 needs backward computation.
I0525 21:59:23.533237 2223 net.cpp:226] relu4_3 needs backward computation.
I0525 21:59:23.533241 2223 net.cpp:226] conv4_3 needs backward computation.
I0525 21:59:23.533246 2223 net.cpp:226] relu4_2 needs backward computation.
I0525 21:59:23.533251 2223 net.cpp:226] conv4_2 needs backward computation.
I0525 21:59:23.533254 2223 net.cpp:226] relu4_1 needs backward computation.
I0525 21:59:23.533258 2223 net.cpp:226] conv4_1 needs backward computation.
I0525 21:59:23.533262 2223 net.cpp:226] pool3 needs backward computation.
I0525 21:59:23.533267 2223 net.cpp:226] relu3_3 needs backward computation.
I0525 21:59:23.533272 2223 net.cpp:226] conv3_3 needs backward computation.
I0525 21:59:23.533275 2223 net.cpp:226] relu3_2 needs backward computation.
I0525 21:59:23.533279 2223 net.cpp:226] conv3_2 needs backward computation.
I0525 21:59:23.533284 2223 net.cpp:226] relu3_1 needs backward computation.
I0525 21:59:23.533288 2223 net.cpp:226] conv3_1 needs backward computation.
I0525 21:59:23.533293 2223 net.cpp:226] pool2 needs backward computation.
I0525 21:59:23.533296 2223 net.cpp:226] relu2_2 needs backward computation.
I0525 21:59:23.533301 2223 net.cpp:226] conv2_2 needs backward computation.
I0525 21:59:23.533305 2223 net.cpp:226] relu2_1 needs backward computation.
I0525 21:59:23.533309 2223 net.cpp:226] conv2_1 needs backward computation.
I0525 21:59:23.533313 2223 net.cpp:226] pool1 needs backward computation.
I0525 21:59:23.533318 2223 net.cpp:226] relu1_2 needs backward computation.
I0525 21:59:23.533321 2223 net.cpp:226] conv1_2 needs backward computation.
I0525 21:59:23.533325 2223 net.cpp:226] relu1_1 needs backward computation.
I0525 21:59:23.533329 2223 net.cpp:226] conv1_1 needs backward computation.
I0525 21:59:23.533334 2223 net.cpp:228] data does not need backward computation.
I0525 21:59:23.533339 2223 net.cpp:270] This network produces output accuracy
I0525 21:59:23.533365 2223 net.cpp:283] Network initialization done.
F0525 21:59:23.533455 2223 solver.cpp:126] Check failed: param_.test_iter_size() == num_test_nets (1 vs. 0) test_iter must be specified for each test network.
*** Check failure stack trace: ***
@ 0x7ff58c9eedaa (unknown)
@ 0x7ff58c9eece4 (unknown)
@ 0x7ff58c9ee6e6 (unknown)
@ 0x7ff58c9f1687 (unknown)
@ 0x7ff58d1a19fe caffe::Solver<>::InitTestNets()
@ 0x7ff58d1a1ded caffe::Solver<>::Init()
@ 0x7ff58d1a20da caffe::Solver<>::Solver()
@ 0x7ff58d041123 caffe::Creator_SGDSolver<>()
@ 0x40ea7e caffe::SolverRegistry<>::CreateSolver()
@ 0x407bb2 train()
@ 0x4059dc main
@ 0x7ff58bcfcf45 (unknown)
@ 0x406111 (unknown)
@ (nil) (unknown)`
我在train.prototxt中添加的图层是:
第一个添加的图层:
layer {
name: "data"
type: "ImageSegData"
top: "data"
top: "label"
top: "data_dim"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 321
mean_value: 104.008
mean_value: 116.669
mean_value: 122.675
}
image_data_param {
root_folder: "/media/TOSHIBA_EXT/dataset/train-data"
source: "/media/TOSHIBA_EXT/dataset/train-data/val.txt"
batch_size: 10
shuffle: false
label_type: PIXEL
}
}
第二个添加的图层:
layer {
name: "accuracy"
type: "SegAccuracy"
bottom: "fc8_voc"
bottom: "label_shrink"
top: "accuracy"
include {
phase: TEST
}
seg_accuracy_param {
ignore_label: 255
}
}
在使用DeepLab时,您能告诉我如何在训练过程中添加val进程吗?