使用回溯的独特排列

时间:2017-05-24 14:54:31

标签: python permutation backtracking

我试图在寻找独特的permutions的问题中使用回溯。我写了这个:

def f(A, start, end):
    if start == end - 1:
        print(A)
    else:
        for idx in range(start, end):
            if idx != start and A[idx] == A[start]:
                continue
            A[idx], A[start] = A[start], A[idx]
            f(A, start + 1, end)

此示例有效

A = [2, 3, 2]
f(A, 0, len(A))

[2, 3, 2]
[2, 2, 3]
[3, 2, 2]

这个没有用

A = [2, 2, 1, 1]
f(A, 0, len(A))

[2, 2, 1, 1]
[2, 1, 2, 1]
[2, 1, 1, 2]
[2, 2, 1, 1] #unwanted duplicate!
[1, 2, 2, 1]
[1, 2, 1, 2]
[1, 1, 2, 2]
[1, 2, 2, 1]
[1, 2, 1, 2]
[2, 2, 1, 1]
[2, 1, 2, 1]
[2, 1, 1, 2]
[2, 2, 1, 1]

为什么结果中仍然有重复项?

5 个答案:

答案 0 :(得分:0)

你的输入数组中有重复的元素。这可能会导致解决方案中的元素冗余或冗余排列,但如果您使用了数组中的唯一元素等输入,例如......

A = [1,2,3,4 ...]等等以下代码可能会有所帮助

def f(A, start, end):
if start == end - 1:
    print(A)
else:
    for idx in range(start, end):
        if idx != start and A[idx] == A[start]:
            continue
        A[idx], A[start] = A[start], A[idx]
        f(A, start + 1, end)
        A[idx], A[start] = A[start], A[idx]  #This is added

这个例子......

A = [1, 2, 3, 4]
f(A, 0, len(A))

OUTPUT是......

[1, 2, 3, 4]
[1, 2, 4, 3]
[1, 3, 2, 4]
[1, 3, 4, 2]
[1, 4, 3, 2]
[1, 4, 2, 3]
[2, 1, 3, 4]
[2, 1, 4, 3]
[2, 3, 1, 4]
[2, 3, 4, 1]
[2, 4, 3, 1]
[2, 4, 1, 3]
[3, 2, 1, 4]
[3, 2, 4, 1]
[3, 1, 2, 4]
[3, 1, 4, 2]
[3, 4, 1, 2]
[3, 4, 2, 1]
[4, 2, 3, 1]
[4, 2, 1, 3]
[4, 3, 2, 1]
[4, 3, 1, 2]
[4, 1, 3, 2]
[4, 1, 2, 3]

希望这可以帮助你:)

答案 1 :(得分:0)

这是因为您正在将切换应用到您的列表中。 (:您在计算排列时修改列表A。)

这是代码的快速修补程序:

def f(A, start, end):
     if start == end - 1:
         print(A)
     else:
         B = A.copy()
         for idx in range(start, end):
             if idx != start and B[idx] == B[start]:
                 continue
             B[idx], B[start] = A[start], A[idx]
             f(B, start + 1, end)

A = [2, 2, 1, 1]
f(A, 0, len(A))
# [2, 2, 1, 1]
# [2, 1, 2, 1]
# [2, 1, 1, 2]
# [1, 2, 2, 1]
# [1, 2, 1, 2]
# [1, 1, 2, 2]

答案 2 :(得分:0)

如果您想避免重复数字造成的重复,您可以先对数据进行排序,然后添加条件进行交换(仅当元素较大时):

def f_s(A, start, end):
    f(sorted(A), start, end)

def f(A, start, end):
    if start == end - 1:
        print(A)
    else:
        for idx in range(start, end):
            if idx != start and A[idx] == A[start]:
                continue
            if A[idx] >= A[start]:
                A[idx], A[start] = A[start], A[idx]
                f(A, start + 1, end)

A = [2, 3, 2]
f_s(A, 0, len(A))

A = [2, 2, 1, 1]
f_s(A, 0, len(A))

输出:

[2, 2, 3]
[2, 3, 2]
[3, 2, 2]

[1, 1, 2, 2]
[1, 2, 1, 2]
[1, 2, 2, 1]
[2, 1, 2, 1]
[2, 2, 1, 1]

答案 3 :(得分:0)

在过滤中,您使用一对一检查。因此,超过三个元素的那一刻开始工作。

这是因为,您可以在多次(真实)掉期后获得相同的排列。例如:

[1   ,2(1),2(2),3   ] -> swap 1 with 3
[1   ,3,   2(2),2(1)] -> swap 1 with 2
[1   ,2(2),3   ,2(1)] -> swap 2 with 3
[1   ,2(2),2(1),3   ]

正如你所看到的那样,排列是相同的(但两个两个的起源是不同的)。所以我们间接地交换了两个两个。

尽管如此,没有必要让它变得那么复杂。有两种方法可以在这里起作用:

  • 对列表进行排序,并强制执行一个只能发出列表的约束,这些列表的字典顺序比以前更多;和
  • 首先计算出现次数(使用Counter,然后确保根据计数器发出)。

后者运行得更快,因为它不会产生必须省略的排列。

示例实现可以是:

from collections import Counter

def f(lst):
    def g(l,c,n):
        if n <= 0:
            yield tuple(l)
        else:
            for k,v in c.items():
                if v > 0:
                    c[k] -= 1
                    l.append(k)
                    for cfg in g(l,c,n-1):
                        yield cfg
                    l.pop()
                    c[k] += 1
    for cfg in g([],Counter(lst),len(lst)):
        yield cfg

这给出了:

>>> list(f([1,1,2,2]))
[(1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 1, 2), (2, 1, 2, 1), (2, 2, 1, 1)]
>>> list(f([1,1,2,2,3]))
[(1, 1, 2, 2, 3), (1, 1, 2, 3, 2), (1, 1, 3, 2, 2), (1, 2, 1, 2, 3), (1, 2, 1, 3, 2), (1, 2, 2, 1, 3), (1, 2, 2, 3, 1), (1, 2, 3, 1, 2), (1, 2, 3, 2, 1), (1, 3, 1, 2, 2), (1, 3, 2, 1, 2), (1, 3, 2, 2, 1), (2, 1, 1, 2, 3), (2, 1, 1, 3, 2), (2, 1, 2, 1, 3), (2, 1, 2, 3, 1), (2, 1, 3, 1, 2), (2, 1, 3, 2, 1), (2, 2, 1, 1, 3), (2, 2, 1, 3, 1), (2, 2, 3, 1, 1), (2, 3, 1, 1, 2), (2, 3, 1, 2, 1), (2, 3, 2, 1, 1), (3, 1, 1, 2, 2), (3, 1, 2, 1, 2), (3, 1, 2, 2, 1), (3, 2, 1, 1, 2), (3, 2, 1, 2, 1), (3, 2, 2, 1, 1)]

答案 4 :(得分:0)

威廉姆(Willem)的answer略有变化,它利用了yield from并解释了发生的事情。我们避免枚举重复元素,但仍对数据进行排序以按字典顺序发出排列。

data class Geo(
    @SerializedName("lat")
    var lat: String,
    @SerializedName("lng")
    var lng: String
)

输出:

def multiset_permutation(A):

    def solve_permutation(depth, counter, permutation):
        # base case/goal
        if depth == 0:
            yield permutation
            return

        # choices
        for key, value in counter.items():
            # constraint
            if value > 0:
                # make a choice
                counter[key] -= 1
                permutation.append(key)

                # explore
                yield from [
                    list(i) for i in solve_permutation(depth - 1, counter, permutation)
                ]

                # backtrack - undo our choices
                permutation.pop()
                counter[key] += 1

    """
    Lexicographical order requires that we sort the list first so that we
    incrementally emit the next larger permutation based on the counters
    """
    A = sorted(A)
    counter = collections.Counter(A)

    return list(solve_permutation(len(A), counter, []))

调用堆栈来解决[[1, 1, 2], [1, 2, 1], [2, 1, 1]] 如下所示:

[1, 1, 2]

递归树:

depth counter permutation
0, {1:0, 2:0}, [1,1,2]
1, {1:0, 2:1}, [1,1]
2, {1:1, 2:1}, [1]
3, {1:2, 2:1}, []

0, {1:0, 2:0}, [1,2,1]
1, {1:0, 2:1}, [1,2]
2, {1:1, 2:1}, [1]

0, {1:0, 2:0}, [2,1,1]
1, {1:0, 2:1}, [2,1]
2, {1:1, 2:1}, [2]
3, {1:2, 2:1}, []