我想保存我训练有素的Tensorflow模型,因此可以通过恢复模型文件来部署它(我跟随this示例,这似乎很有意义)。但是,要做到这一点,我需要命名张量,以便我可以用以下内容重新加载变量:
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("my_tensor:0")
我使用 string_input_producer (下面的代码)从文件名列表中排队图像,但是如何命名张量以便我可以在以后重新加载它们?
import tensorflow as tf
flags = tf.app.flags
conf = flags.FLAGS
class ImageDataSet(object):
def __init__(self, img_list_path, num_epoch, batch_size):
# Build the record list queue
input_file = open(images_list_path, 'r')
self.record_list = []
for line in input_file:
line = line.strip()
self.record_list.append(line)
filename_queue = tf.train.string_input_producer(self.record_list, num_epochs=num_epoch)
image_reader = tf.WholeFileReader()
_, image_file = image_reader.read(filename_queue)
image = tf.image.decode_jpeg(image_file, conf.img_colour_channels)
# preprocess
# ...
min_after_dequeue = 1000
capacity = min_after_dequeue + 400 * batch_size
self.images = tf.train.shuffle_batch(image, batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
答案 0 :(得分:0)