TypeError:不能腌制_thread.lock对象

时间:2017-05-23 20:39:41

标签: python-3.x

尝试使用共享队列同时运行两个不同的函数并获得错误...如何使用共享队列同时运行两个函数?这是Windows 7上的Python 3.6版。

from multiprocessing import Process
from queue import Queue
import logging

def main():
    x = DataGenerator()
    try:
        x.run()
    except Exception as e:
        logging.exception("message")


class DataGenerator:

    def __init__(self):
        logging.basicConfig(filename='testing.log', level=logging.INFO)

    def run(self):
        logging.info("Running Generator")
        queue = Queue()
        Process(target=self.package, args=(queue,)).start()
        logging.info("Process started to generate data")
        Process(target=self.send, args=(queue,)).start()
        logging.info("Process started to send data.")

    def package(self, queue): 
        while True:
            for i in range(16):
                datagram = bytearray()
                datagram.append(i)
                queue.put(datagram)

    def send(self, queue):
        byte_array = bytearray()
        while True:
            size_of__queue = queue.qsize()
            logging.info(" queue size %s", size_of_queue)
            if size_of_queue > 7:
                for i in range(1, 8):
                    packet = queue.get()
                    byte_array.append(packet)
                logging.info("Sending datagram ")
                print(str(datagram))
                byte_array(0)

if __name__ == "__main__":
    main()

日志表示错误,我尝试以管理员身份运行控制台,并收到相同的消息...

INFO:root:Running Generator
ERROR:root:message
Traceback (most recent call last):
  File "test.py", line 8, in main
    x.run()
  File "test.py", line 20, in run
    Process(target=self.package, args=(queue,)).start()
  File "C:\ProgramData\Miniconda3\lib\multiprocessing\process.py", line 105, in start
    self._popen = self._Popen(self)
  File "C:\ProgramData\Miniconda3\lib\multiprocessing\context.py", line 223, in _Popen
    return _default_context.get_context().Process._Popen(process_obj)
  File "C:\ProgramData\Miniconda3\lib\multiprocessing\context.py", line 322, in _Popen
    return Popen(process_obj)
  File "C:\ProgramData\Miniconda3\lib\multiprocessing\popen_spawn_win32.py", line 65, in __init__
    reduction.dump(process_obj, to_child)
  File "C:\ProgramData\Miniconda3\lib\multiprocessing\reduction.py", line 60, in dump
    ForkingPickler(file, protocol).dump(obj)
TypeError: can't pickle _thread.lock objects

4 个答案:

答案 0 :(得分:5)

答案 1 :(得分:2)

您需要将from queue import Queue更改为from multiprocessing import Queue

根本原因是前一个Queue是为线程模块Queue而设计的,而后一个是用于多处理.Process模块​​。

有关详细信息,您可以阅读一些源代码或与我联系!

答案 2 :(得分:1)

我在Python 3.6.3中遇到与Pool()相同的问题。

收到错误:TypeError: can't pickle _thread.RLock objects

假设我们想要并行地向某个列表num_to_add的每个元素添加一些数字num_list。代码示意如下:

class DataGenerator:
    def __init__(self, num_list, num_to_add)
        self.num_list = num_list # e.g. [4,2,5,7]
        self.num_to_add = num_to_add # e.g. 1 

        self.run()

    def run(self):
        new_num_list = Manager().list()

        pool = Pool(processes=50)
        results = [pool.apply_async(run_parallel, (num, new_num_list)) 
                      for num in num_list]
        roots = [r.get() for r in results]
        pool.close()
        pool.terminate()
        pool.join()

    def run_parallel(self, num, shared_new_num_list):
        new_num = num + self.num_to_add # uses class parameter
        shared_new_num_list.append(new_num)

这里的问题是函数self中的run_parallel()无法被腌制,因为它是一个类实例。将此并行化函数run_parallel()移出课堂有所帮助。但它不是最好的解决方案,因为这个函数可能需要使用像self.num_to_add这样的类参数,然后你必须将它作为参数传递。

解决方案:

def run_parallel(num, shared_new_num_list, to_add): # to_add is passed as an argument
    new_num = num + to_add
    shared_new_num_list.append(new_num)

class DataGenerator:
    def __init__(self, num_list, num_to_add)
        self.num_list = num_list # e.g. [4,2,5,7]
        self.num_to_add = num_to_add # e.g. 1

        self.run()

    def run(self):
        new_num_list = Manager().list()

        pool = Pool(processes=50)
        results = [pool.apply_async(run_parallel, (num, new_num_list, self.num_to_add)) # num_to_add is passed as an argument
                      for num in num_list]
        roots = [r.get() for r in results]
        pool.close()
        pool.terminate()
        pool.join()

上述其他建议对我没有帮助。

答案 3 :(得分:0)

补充玛丽娜在这里回答一些可以访问整个班级的内容。它也愚弄了我今天需要的 Pool.map。

fakeSelf = None

def run_parallel(num, shared_new_num_list, to_add): # to_add is passed as an argument
    new_num = num + fakeSelf.num_to_add
    shared_new_num_list.append(new_num)

class DataGenerator:
    def __init__(self, num_list, num_to_add)
        globals()['fakeSelf'] = self
        self.num_list = num_list # e.g. [4,2,5,7]
        self.num_to_add = num_to_add # e.g. 1

        self.run()

    def run(self):
        new_num_list = Manager().list()