在SciPy中,可以按如下方式实现beta分发:
x=640495496
alpha=1.5017096
beta=628.110247
A=0
B=148000000000
p = scipy.stats.beta.cdf(x, alpha, beta, loc=A, scale=B-A)
现在,假设我有一个带有x,alpha,beta,A,B列的Pandas数据帧。如何将beta分布应用于每一行,将结果作为新列附加?
答案 0 :(得分:2)
需要apply
功能scipy.stats.beta.cdf
和axis=1
:
df['p'] = df.apply(lambda x: scipy.stats.beta.cdf(x['x'],
x['alpha'],
x['beta'],
loc=x['A'],
scale=x['B']-x['A']), axis=1)
样品:
import scipy.stats
df = pd.DataFrame({'x':[640495496, 640495440],
'alpha':[1.5017096,1.5017045],
'beta':[628.110247, 620.110],
'A':[0,0],
'B':[148000000000,148000000000]})
print (df)
A B alpha beta x
0 0 148000000000 1.501710 628.110247 640495496
1 0 148000000000 1.501704 620.110000 640495440
df['p'] = df.apply(lambda x: scipy.stats.beta.cdf(x['x'],
x['alpha'],
x['beta'],
loc=x['A'],
scale=x['B']-x['A']), axis=1)
print (df)
A B alpha beta x p
0 0 148000000000 1.501710 628.110247 640495496 0.858060
1 0 148000000000 1.501704 620.110000 640495440 0.853758
答案 1 :(得分:1)
鉴于我怀疑pandas apply只是循环遍历所有行,并且scipy.stats发行版在每次调用时都有相当多的开销,我会使用矢量化版本:
>>> from scipy import stats
>>> df['p'] = stats.beta.cdf(df['x'], df['alpha'], df['beta'], loc=df['A'], scale=df['B']-df['A'])
>>> df
A B alpha beta x p
0 0 148000000000 1.501710 628.110247 640495496 0.858060
1 0 148000000000 1.501704 620.110000 640495440 0.853758