是否有一个库可以找到BigInteger的平方根?我希望它离线计算 - 只有一次,而不是在任何循环内。所以即使是计算量很大的解决方案也没关系。
我不想找到一些算法和实现。一个现成的解决方案将是完美的。
答案 0 :(得分:31)
只是为了好玩:
public static BigInteger sqrt(BigInteger x) {
BigInteger div = BigInteger.ZERO.setBit(x.bitLength()/2);
BigInteger div2 = div;
// Loop until we hit the same value twice in a row, or wind
// up alternating.
for(;;) {
BigInteger y = div.add(x.divide(div)).shiftRight(1);
if (y.equals(div) || y.equals(div2))
return y;
div2 = div;
div = y;
}
}
答案 1 :(得分:20)
我知道你的问题没有库解决方案。您必须从某处导入外部库解决方案。我在下面给你的内容不如获得外部库那么复杂。
您可以使用两个静态方法在类中创建自己的外部库解决方案,如下所示,并将其添加到外部库集合中。这些方法不需要是实例方法,因此它们是静态的,方便的是,您不必在实例中使用它们。整数平方根的范数是一个底值(即小于或等于平方根的最大整数),因此您可能只需要在下面的类中使用一个静态方法,floor方法作为底值,并且可以选择忽略上限(即大于或等于平方根的最小整数)方法版本。现在,它们位于默认包中,但您可以添加一个包语句,将它们放在您认为方便的包中。
方法很简单,迭代会非常非常快地收敛到最接近的整数答案。如果你试图给他们一个负面的参数,他们会抛出IllegalArgumentException。您可以将异常更改为另一个异常,但必须确保negatve参数抛出某种异常或至少不尝试计算。由于我们不在虚数的范围内,所以不存在负数的整数平方根。
这些来自众所周知的简单迭代整数平方根算法,这些算法已经在手工计算中使用了几个世纪。它通过平均过高估计和低估来收敛到更好的估计。这可以重复,直到估计值尽可能接近。
它们基于y1 =((x / y0)+ y0)/ 2收敛到最大整数yn,其中yn * yn <= x。
这将为您提供BigInteger平方根y的底值,其中x为 y * y&lt; = x和(y + 1)*(y + 1)&gt; X
改编可以为BigInteger平方根y提供x的最大值 y * y&gt; = x和(y-1)*(y-1)&lt; X
这两种方法都经过测试和工作。他们在这里:
import java.math.BigInteger;
public class BigIntSqRoot {
public static BigInteger bigIntSqRootFloor(BigInteger x)
throws IllegalArgumentException {
if (x.compareTo(BigInteger.ZERO) < 0) {
throw new IllegalArgumentException("Negative argument.");
}
// square roots of 0 and 1 are trivial and
// y == 0 will cause a divide-by-zero exception
if (x .equals(BigInteger.ZERO) || x.equals(BigInteger.ONE)) {
return x;
} // end if
BigInteger two = BigInteger.valueOf(2L);
BigInteger y;
// starting with y = x / 2 avoids magnitude issues with x squared
for (y = x.divide(two);
y.compareTo(x.divide(y)) > 0;
y = ((x.divide(y)).add(y)).divide(two));
return y;
} // end bigIntSqRootFloor
public static BigInteger bigIntSqRootCeil(BigInteger x)
throws IllegalArgumentException {
if (x.compareTo(BigInteger.ZERO) < 0) {
throw new IllegalArgumentException("Negative argument.");
}
// square roots of 0 and 1 are trivial and
// y == 0 will cause a divide-by-zero exception
if (x == BigInteger.ZERO || x == BigInteger.ONE) {
return x;
} // end if
BigInteger two = BigInteger.valueOf(2L);
BigInteger y;
// starting with y = x / 2 avoids magnitude issues with x squared
for (y = x.divide(two);
y.compareTo(x.divide(y)) > 0;
y = ((x.divide(y)).add(y)).divide(two));
if (x.compareTo(y.multiply(y)) == 0) {
return y;
} else {
return y.add(BigInteger.ONE);
}
} // end bigIntSqRootCeil
} // end class bigIntSqRoot
答案 2 :(得分:5)
我无法验证它们的准确性,但谷歌搜索时有几种本土解决方案。其中最好的似乎是这一个:http://www.merriampark.com/bigsqrt.htm
还可以尝试Apache commons Math项目(一旦Apache在JCP博客文章发布之后从其轰炸中恢复过来)。
答案 3 :(得分:4)
奇怪的是,没有人提到它,但是在Java 9中,BigInteger中包含sqrt,因此您可以像这样使用它:
BigInteger nine = BigInteger.valueOf(9);
BigInteger three = nine.sqrt();
https://docs.oracle.com/javase/9/docs/api/java/math/BigInteger.html#sqrt--
答案 4 :(得分:4)
正如Jigar所述,Newton's iteration非常易于理解和实施。我会让其他人决定是否是最有效的算法来查找数字的平方根。
使用递归可以在大约两行中完成。
private static BigInteger newtonIteration(BigInteger n, BigInteger x0)
{
final BigInteger x1 = n.divide(x0).add(x0).shiftRight(1);
return x0.equals(x1)||x0.equals(x1.subtract(BigInteger.ONE)) ? x0 : newtonIteration(n, x1);
}
其中 n 是我们想要找到平方根的数字,而 x0 是前一次调用的数字,当启动第一次调用时,它始终为1从另一种方法打电话。所以最好,你也会用这样的东西来补充它;
public static BigInteger sqrt(final BigInteger number)
{
if(number.signum() == -1)
throw new ArithmeticException("We can only calculate the square root of positive numbers.");
return newtonIteration(number, BigInteger.ONE);
}
答案 5 :(得分:2)
对于初步猜测,我会使用Math.sqrt(bi.doubleValue())
,您可以使用已建议的链接来使答案更准确。
答案 6 :(得分:2)
另一种方法,很轻松。对于某些情况,使用牛顿法的速度方面,Mantono的答案可能更为可取。
这是我的方法......
public static BigInteger sqrt(BigInteger n) {
BigInteger a = BigInteger.ONE;
BigInteger b = n.shiftRight(1).add(new BigInteger("2")); // (n >> 1) + 2 (ensure 0 doesn't show up)
while (b.compareTo(a) >= 0) {
BigInteger mid = a.add(b).shiftRight(1); // (a+b) >> 1
if (mid.multiply(mid).compareTo(n) > 0)
b = mid.subtract(BigInteger.ONE);
else
a = mid.add(BigInteger.ONE);
}
return a.subtract(BigInteger.ONE);
}
答案 7 :(得分:2)
我需要使用BigIntegers的平方根来实现二次筛。我在这里使用了一些解决方案,但到目前为止绝对最快和最好的解决方案来自Google Guava的BigInteger库。
可以找到文档here。
答案 8 :(得分:1)
简化Jim answer并提高了效果。
public class BigIntSqRoot {
private static BigInteger two = BigInteger.valueOf(2L);
public static BigInteger bigIntSqRootFloor(BigInteger x)
throws IllegalArgumentException {
if (checkTrivial(x)) {
return x;
}
if (x.bitLength() < 64) { // Can be cast to long
double sqrt = Math.sqrt(x.longValue());
return BigInteger.valueOf(Math.round(sqrt));
}
// starting with y = x / 2 avoids magnitude issues with x squared
BigInteger y = x.divide(two);
BigInteger value = x.divide(y);
while (y.compareTo(value) > 0) {
y = value.add(y).divide(two);
value = x.divide(y);
}
return y;
}
public static BigInteger bigIntSqRootCeil(BigInteger x)
throws IllegalArgumentException {
BigInteger y = bigIntSqRootFloor(x);
if (x.compareTo(y.multiply(y)) == 0) {
return y;
}
return y.add(BigInteger.ONE);
}
private static boolean checkTrivial(BigInteger x) {
if (x == null) {
throw new NullPointerException("x can't be null");
}
if (x.compareTo(BigInteger.ZERO) < 0) {
throw new IllegalArgumentException("Negative argument.");
}
// square roots of 0 and 1 are trivial and
// y == 0 will cause a divide-by-zero exception
if (x.equals(BigInteger.ZERO) || x.equals(BigInteger.ONE)) {
return true;
} // end if
return false;
}
}
答案 9 :(得分:1)
更新(23July2018):这项技术无法适用于更大的值。在下面发布了基于二进制搜索的不同技术。
我正在研究因子分解并最终写出来。
package com.example.so.math;
import java.math.BigInteger;
/**
*
* <p>https://stackoverflow.com/questions/4407839/how-can-i-find-the-square-root-of-a-java-biginteger</p>
* @author Ravindra
* @since 06August2017
*
*/
public class BigIntegerSquareRoot {
public static void main(String[] args) {
int[] values = {5,11,25,31,36,42,49,64,100,121};
for (int i : values) {
BigInteger result = handleSquareRoot(BigInteger.valueOf(i));
System.out.println(i+":"+result);
}
}
private static BigInteger handleSquareRoot(BigInteger modulus) {
int MAX_LOOP_COUNT = 100; // arbitrary for now.. but needs to be proportional to sqrt(modulus)
BigInteger result = null;
if( modulus.equals(BigInteger.ONE) ) {
result = BigInteger.ONE;
return result;
}
for(int i=2;i<MAX_LOOP_COUNT && i<modulus.intValue();i++) { // base-values can be list of primes...
//System.out.println("i"+i);
BigInteger bigIntegerBaseTemp = BigInteger.valueOf(i);
BigInteger bigIntegerRemainderTemp = bigIntegerBaseTemp.modPow(modulus, modulus);
BigInteger bigIntegerRemainderSubtractedByBase = bigIntegerRemainderTemp.subtract(bigIntegerBaseTemp);
BigInteger bigIntegerRemainderSubtractedByBaseFinal = bigIntegerRemainderSubtractedByBase;
BigInteger resultTemp = null;
if(bigIntegerRemainderSubtractedByBase.signum() == -1 || bigIntegerRemainderSubtractedByBase.signum() == 1) {
bigIntegerRemainderSubtractedByBaseFinal = bigIntegerRemainderSubtractedByBase.add(modulus);
resultTemp = bigIntegerRemainderSubtractedByBaseFinal.gcd(modulus);
} else if(bigIntegerRemainderSubtractedByBase.signum() == 0) {
resultTemp = bigIntegerBaseTemp.gcd(modulus);
}
if( resultTemp.multiply(resultTemp).equals(modulus) ) {
System.out.println("Found square root for modulus :"+modulus);
result = resultTemp;
break;
}
}
return result;
}
}
这种方法可以这样形象化:
希望这有帮助!
答案 10 :(得分:1)
BigDecimal BDtwo = new BigDecimal("2");
BigDecimal BDtol = new BigDecimal(".000000001");
private BigDecimal bigIntSQRT(BigDecimal lNew, BigDecimal lOld, BigDecimal n) {
lNew = lOld.add(n.divide(lOld, 9, BigDecimal.ROUND_FLOOR)).divide(BDtwo, 9, BigDecimal.ROUND_FLOOR);
if (lOld.subtract(lNew).abs().compareTo(BDtol) == 1) {
lNew = bigIntSQRT(lNew, lNew, n);
}
return lNew;
}
我正在研究这个问题并成功用Java编写了一个递归的平方根查找程序。您可以将 BDtol 更改为您想要的任何内容,但运行速度相当快,并给出了以下示例:
原始编号 146783911423364576743092537299333563769268393112173908757133540102089006265925538868650825438150202201473025
SQRT - &gt; 383123885216472214589586756787577295328224028242477055.000000000
然后确认 146783911423364576743092537299333563769268393112173908757133540102089006265925538868650825438150202201473025.000000000000000000
答案 11 :(得分:1)
这是我找到的最好(也是最短)的工作解决方案
http://faruk.akgul.org/blog/javas-missing-algorithm-biginteger-sqrt/
以下是代码:
public static BigInteger sqrt(BigInteger n) {
BigInteger a = BigInteger.ONE;
BigInteger b = new BigInteger(n.shiftRight(5).add(new BigInteger("8")).toString());
while(b.compareTo(a) >= 0) {
BigInteger mid = new BigInteger(a.add(b).shiftRight(1).toString());
if(mid.multiply(mid).compareTo(n) > 0) b = mid.subtract(BigInteger.ONE);
else a = mid.add(BigInteger.ONE);
}
return a.subtract(BigInteger.ONE);
}
我已经测试了它并且它正常工作(并且似乎很快)
答案 12 :(得分:0)
C#语言具有与Java类似的语法。我写了这个递归解决方案。
static BigInteger fsqrt(BigInteger n)
{
string sn = n.ToString();
return guess(n, BigInteger.Parse(sn.Substring(0, sn.Length >> 1)), 0);
}
static BigInteger guess(BigInteger n, BigInteger g, BigInteger last)
{
if (last >= g - 1 && last <= g + 1) return g;
else return guess(n, (g + (n / g)) >> 1, g);
}
像这样调用这个代码(在Java中我猜它会是“System.out.print”)。
Console.WriteLine(fsqrt(BigInteger.Parse("783648276815623658365871365876257862874628734627835648726")));
答案是: 27993718524262253829858552106
免责声明:我知道此方法不适用于小于10的数字;这是一个BigInteger平方根方法。
这很容易解决。将第一个方法更改为以下方法,为递归部分提供一些呼吸空间。
static BigInteger fsqrt(BigInteger n)
{
if (n > 999)
{
string sn = n.ToString();
return guess(n, BigInteger.Parse(sn.Substring(0, sn.Length >> 1)), 0);
}
else return guess(n, n >> 1, 0);
}
答案 13 :(得分:0)
您也可以使用二进制搜索来查找x的平方根 你也可以将它乘以例如10 ^ 10,并通过二进制搜索找到一个像m这样的整数,因为m ^ 2
System.out.println(m.divide(10^5)+"."+m.mod(10^5));
&#13;
答案 14 :(得分:0)
这是一个不使用BigInteger.multiply或BigInteger.divide的解决方案:
private static final BigInteger ZERO = BigInteger.ZERO;
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = BigInteger.valueOf(2);
private static final BigInteger THREE = BigInteger.valueOf(3);
/**
* This method computes sqrt(n) in O(n.bitLength()) time,
* and computes it exactly. By "exactly", I mean it returns
* not only the (floor of the) square root s, but also the
* remainder r, such that r >= 0, n = s^2 + r, and
* n < (s + 1)^2.
*
* @param n The argument n, as described above.
*
* @return An array of two values, where the first element
* of the array is s and the second is r, as
* described above.
*
* @throws IllegalArgumentException if n is not nonnegative.
*/
public static BigInteger[] sqrt(BigInteger n) {
if (n == null || n.signum() < 0) {
throw new IllegalArgumentException();
}
int bl = n.bitLength();
if ((bl & 1) != 0) {
++ bl;
}
BigInteger s = ZERO;
BigInteger r = ZERO;
while (bl >= 2) {
s = s.shiftLeft(1);
BigInteger crumb = n.testBit(-- bl)
? (n.testBit(-- bl) ? THREE : TWO)
: (n.testBit(-- bl) ? ONE : ZERO);
r = r.shiftLeft(2).add(crumb);
BigInteger d = s.shiftLeft(1);
if (d.compareTo(r) < 0) {
s = s.add(ONE);
r = r.subtract(d).subtract(ONE);
}
}
assert r.signum() >= 0;
assert n.equals(s.multiply(s).add(r));
assert n.compareTo(s.add(ONE).multiply(s.add(ONE))) < 0;
return new BigInteger[] {s, r};
}
答案 15 :(得分:0)
我在上面发布的答案不适用于大量数字(但有趣的是!)。因此,发布了二进制搜索方法来确定平方根的正确性。
package com.example.so.squareroot;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
/**
* <p>https://stackoverflow.com/questions/4407839/how-can-i-find-the-square-root-of-a-java-biginteger</p>
* <p> Determine square-root of a number or its closest whole number (binary-search-approach) </p>
* @author Ravindra
* @since 07-July-2018
*
*/
public class BigIntegerSquareRootV2 {
public static void main(String[] args) {
List<BigInteger> listOfSquares = new ArrayList<BigInteger>();
listOfSquares.add(BigInteger.valueOf(5).multiply(BigInteger.valueOf(5)).pow(2));
listOfSquares.add(BigInteger.valueOf(11).multiply(BigInteger.valueOf(11)).pow(2));
listOfSquares.add(BigInteger.valueOf(15485863).multiply(BigInteger.valueOf(10000019)).pow(2));
listOfSquares.add(BigInteger.valueOf(533000401).multiply(BigInteger.valueOf(982451653)).pow(2));
listOfSquares.add(BigInteger.valueOf(11).multiply(BigInteger.valueOf(23)));
listOfSquares.add(BigInteger.valueOf(11).multiply(BigInteger.valueOf(23)).pow(2));
for (BigInteger bigIntegerNumber : listOfSquares) {
BigInteger squareRoot = calculateSquareRoot(bigIntegerNumber);
System.out.println("Result :"+bigIntegerNumber+":"+squareRoot);
}
System.out.println("*********************************************************************");
for (BigInteger bigIntegerNumber : listOfSquares) {
BigInteger squareRoot = determineClosestWholeNumberSquareRoot(bigIntegerNumber);
System.out.println("Result :"+bigIntegerNumber+":"+squareRoot);
}
}
/*
Result :625:25
Result :14641:121
Result :23981286414105556927200571609:154858924231397
Result :274206311533451346298141971207799609:523647125012112853
Result :253:null
Result :64009:253
*/
public static BigInteger calculateSquareRoot(BigInteger number) {
/*
* Can be optimized by passing a bean to store the comparison result and avoid having to re-calculate.
*/
BigInteger squareRootResult = determineClosestWholeNumberSquareRoot(number);
if( squareRootResult.pow(2).equals(number)) {
return squareRootResult;
}
return null;
}
/*
Result :625:25
Result :14641:121
Result :23981286414105556927200571609:154858924231397
Result :274206311533451346298141971207799609:523647125012112853
Result :253:15
Result :64009:253
*/
private static BigInteger determineClosestWholeNumberSquareRoot(BigInteger number) {
BigInteger result = null;
if(number.equals(BigInteger.ONE)) {
return BigInteger.ONE;
} else if( number.equals(BigInteger.valueOf(2)) ) {
return BigInteger.ONE;
} else if( number.equals(BigInteger.valueOf(3)) ) {
return BigInteger.ONE;
} else if( number.equals(BigInteger.valueOf(4)) ) {
return BigInteger.valueOf(2);
}
BigInteger tempBaseLow = BigInteger.valueOf(2);
BigInteger tempBaseHigh = number.shiftRight(1); // divide by 2
int loopCount = 11;
while(true) {
if( tempBaseHigh.subtract(tempBaseLow).compareTo(BigInteger.valueOf(loopCount)) == -1 ) { // for lower numbers use for-loop
//System.out.println("Breaking out of while-loop.."); // uncomment-for-debugging
break;
}
BigInteger tempBaseMid = tempBaseHigh.subtract(tempBaseLow).shiftRight(1).add(tempBaseLow); // effectively mid = [(high-low)/2]+low
BigInteger tempBaseMidSquared = tempBaseMid.pow(2);
int comparisonResultTemp = tempBaseMidSquared.compareTo(number);
if(comparisonResultTemp == -1) { // move mid towards higher number
tempBaseLow = tempBaseMid;
} else if( comparisonResultTemp == 0 ) { // number is a square ! return the same !
return tempBaseMid;
} else { // move mid towards lower number
tempBaseHigh = tempBaseMid;
}
}
BigInteger tempBasePrevious = tempBaseLow;
BigInteger tempBaseCurrent = tempBaseLow;
for(int i=0;i<(loopCount+1);i++) {
BigInteger tempBaseSquared = tempBaseCurrent.pow(2);
//System.out.println("Squared :"+tempBaseSquared); // uncomment-for-debugging
int comparisonResultTempTwo = tempBaseSquared.compareTo(number);
if( comparisonResultTempTwo == -1 ) { // move current to previous and increment current...
tempBasePrevious = tempBaseCurrent;
tempBaseCurrent = tempBaseCurrent.add(BigInteger.ONE);
} else if( comparisonResultTempTwo == 0 ) { // is an exact match!
tempBasePrevious = tempBaseCurrent;
break;
} else { // we've identified the point of deviation.. break..
//System.out.println("breaking out of for-loop for square root..."); // uncomment-for-debugging
break;
}
}
result = tempBasePrevious;
//System.out.println("Returning :"+result); // uncomment-for-debugging
return result;
}
}
问候 拉文德拉
答案 16 :(得分:0)
我只是到了平方根的整数部分,但你可以修改这个粗略的算法,以达到你想要的更高精度:
public static void main(String args[]) {
BigInteger N = new BigInteger(
"17976931348623159077293051907890247336179769789423065727343008115"
+ "77326758055056206869853794492129829595855013875371640157101398586"
+ "47833778606925583497541085196591615128057575940752635007475935288"
+ "71082364994994077189561705436114947486504671101510156394068052754"
+ "0071584560878577663743040086340742855278549092581");
System.out.println(N.toString(10).length());
String sqrt = "";
BigInteger divisor = BigInteger.ZERO;
BigInteger toDivide = BigInteger.ZERO;
String Nstr = N.toString(10);
if (Nstr.length() % 2 == 1)
Nstr = "0" + Nstr;
for (int digitCount = 0; digitCount < Nstr.length(); digitCount += 2) {
toDivide = toDivide.multiply(BigInteger.TEN).multiply(
BigInteger.TEN);
toDivide = toDivide.add(new BigInteger(Nstr.substring(digitCount,
digitCount + 2)));
String div = divisor.toString(10);
divisor = divisor.add(new BigInteger(
div.substring(div.length() - 1)));
int into = tryMax(divisor, toDivide);
divisor = divisor.multiply(BigInteger.TEN).add(
BigInteger.valueOf(into));
toDivide = toDivide.subtract(divisor.multiply(BigInteger
.valueOf(into)));
sqrt = sqrt + into;
}
System.out.println(String.format("Sqrt(%s) = %s", N, sqrt));
}
private static int tryMax(final BigInteger divisor,
final BigInteger toDivide) {
for (int i = 9; i > 0; i--) {
BigInteger div = divisor.multiply(BigInteger.TEN).add(
BigInteger.valueOf(i));
if (div.multiply(BigInteger.valueOf(i)).compareTo(toDivide) <= 0)
return i;
}
return 0;
}
答案 17 :(得分:0)
这是一种易于理解的方法,虽然可能无法获得最佳性能,但可以在不到一秒钟的时间内为单个BigInteger提供解决方案。
result.astype(typing)
答案 18 :(得分:-2)
单线可以完成我认为的工作。
Math.pow(bigInt.doubleValue(), (1/n));