如何找到Java BigInteger的平方根?

时间:2010-12-10 10:24:58

标签: java biginteger square-root

是否有一个库可以找到BigInteger的平方根?我希望它离线计算 - 只有一次,而不是在任何循环内。所以即使是计算量很大的解决方案也没关系。

我不想找到一些算法和实现。一个现成的解决方案将是完美的。

19 个答案:

答案 0 :(得分:31)

只是为了好玩:

public static BigInteger sqrt(BigInteger x) {
    BigInteger div = BigInteger.ZERO.setBit(x.bitLength()/2);
    BigInteger div2 = div;
    // Loop until we hit the same value twice in a row, or wind
    // up alternating.
    for(;;) {
        BigInteger y = div.add(x.divide(div)).shiftRight(1);
        if (y.equals(div) || y.equals(div2))
            return y;
        div2 = div;
        div = y;
    }
}

答案 1 :(得分:20)

我知道你的问题没有库解决方案。您必须从某处导入外部库解决方案。我在下面给你的内容不如获得外部库那么复杂。

您可以使用两个静态方法在类中创建自己的外部库解决方案,如下所示,并将其添加到外部库集合中。这些方法不需要是实例方法,因此它们是静态的,方便的是,您不必在实例中使用它们。整数平方根的范数是一个底值(即小于或等于平方根的最大整数),因此您可能只需要在下面的类中使用一个静态方法,floor方法作为底值,并且可以选择忽略上限(即大于或等于平方根的最小整数)方法版本。现在,它们位于默认包中,但您可以添加一个包语句,将它们放在您认为方便的包中。

方法很简单,迭代会非常非常快地收敛到最接近的整数答案。如果你试图给他们一个负面的参数,他们会抛出IllegalArgumentException。您可以将异常更改为另一个异常,但必须确保negatve参数抛出某种异常或至少不尝试计算。由于我们不在虚数的范围内,所以不存在负数的整数平方根。

这些来自众所周知的简单迭代整数平方根算法,这些算法已经在手工计算中使用了几个世纪。它通过平均过高估计和低估来收敛到更好的估计。这可以重复,直到估计值尽可能接近。

它们基于y1 =((x / y0)+ y0)/ 2收敛到最大整数yn,其中yn * yn <= x。

这将为您提供BigInteger平方根y的底值,其中x为 y * y&lt; = x和(y + 1)*(y + 1)&gt; X

改编可以为BigInteger平方根y提供x的最大值 y * y&gt; = x和(y-1)*(y-1)&lt; X

这两种方法都经过测试和工作。他们在这里:

import java.math.BigInteger;

public class BigIntSqRoot {

public static BigInteger bigIntSqRootFloor(BigInteger x)
        throws IllegalArgumentException {
    if (x.compareTo(BigInteger.ZERO) < 0) {
        throw new IllegalArgumentException("Negative argument.");
    }
    // square roots of 0 and 1 are trivial and
    // y == 0 will cause a divide-by-zero exception
    if (x .equals(BigInteger.ZERO) || x.equals(BigInteger.ONE)) {
        return x;
    } // end if
    BigInteger two = BigInteger.valueOf(2L);
    BigInteger y;
    // starting with y = x / 2 avoids magnitude issues with x squared
    for (y = x.divide(two);
            y.compareTo(x.divide(y)) > 0;
            y = ((x.divide(y)).add(y)).divide(two));
    return y;
} // end bigIntSqRootFloor

public static BigInteger bigIntSqRootCeil(BigInteger x)
        throws IllegalArgumentException {
    if (x.compareTo(BigInteger.ZERO) < 0) {
        throw new IllegalArgumentException("Negative argument.");
    }
    // square roots of 0 and 1 are trivial and
    // y == 0 will cause a divide-by-zero exception
    if (x == BigInteger.ZERO || x == BigInteger.ONE) {
        return x;
    } // end if
    BigInteger two = BigInteger.valueOf(2L);
    BigInteger y;
    // starting with y = x / 2 avoids magnitude issues with x squared
    for (y = x.divide(two);
            y.compareTo(x.divide(y)) > 0;
            y = ((x.divide(y)).add(y)).divide(two));
    if (x.compareTo(y.multiply(y)) == 0) {
        return y;
    } else {
        return y.add(BigInteger.ONE);
    }
} // end bigIntSqRootCeil
} // end class bigIntSqRoot

答案 2 :(得分:5)

我无法验证它们的准确性,但谷歌搜索时有几种本土解决方案。其中最好的似乎是这一个:http://www.merriampark.com/bigsqrt.htm

还可以尝试Apache commons Math项目(一旦Apache在JCP博客文章发布之后从其轰炸中恢复过来)。

答案 3 :(得分:4)

奇怪的是,没有人提到它,但是在Java 9中,BigInteger中包含sqrt,因此您可以像这样使用它:

BigInteger nine = BigInteger.valueOf(9);
BigInteger three = nine.sqrt();

https://docs.oracle.com/javase/9/docs/api/java/math/BigInteger.html#sqrt--

答案 4 :(得分:4)

正如Jigar所述,Newton's iteration非常易于理解和实施。我会让其他人决定是否是最有效的算法来查找数字的平方根。

使用递归可以在大约两行中完成。

private static BigInteger newtonIteration(BigInteger n, BigInteger x0)
{
    final BigInteger x1 = n.divide(x0).add(x0).shiftRight(1);
    return x0.equals(x1)||x0.equals(x1.subtract(BigInteger.ONE)) ? x0 : newtonIteration(n, x1);
}

其中 n 是我们想要找到平方根的数字,而 x0 是前一次调用的数字,当启动第一次调用时,它始终为1从另一种方法打电话。所以最好,你也会用这样的东西来补充它;

public static BigInteger sqrt(final BigInteger number)
{
    if(number.signum() == -1)
        throw new ArithmeticException("We can only calculate the square root of positive numbers.");
    return newtonIteration(number, BigInteger.ONE);
}

答案 5 :(得分:2)

对于初步猜测,我会使用Math.sqrt(bi.doubleValue()),您可以使用已建议的链接来使答案更准确。

答案 6 :(得分:2)

另一种方法,很轻松。对于某些情况,使用牛顿法的速度方面,Mantono的答案可能更为可取。

这是我的方法......

public static BigInteger sqrt(BigInteger n) {
    BigInteger a = BigInteger.ONE;
    BigInteger b = n.shiftRight(1).add(new BigInteger("2")); // (n >> 1) + 2 (ensure 0 doesn't show up)
    while (b.compareTo(a) >= 0) {
        BigInteger mid = a.add(b).shiftRight(1); // (a+b) >> 1
        if (mid.multiply(mid).compareTo(n) > 0)
            b = mid.subtract(BigInteger.ONE);
        else
            a = mid.add(BigInteger.ONE);
    }
    return a.subtract(BigInteger.ONE);
}

答案 7 :(得分:2)

我需要使用BigIntegers的平方根来实现二次筛。我在这里使用了一些解决方案,但到目前为止绝对最快和最好的解决方案来自Google Guava的BigInteger库。

可以找到文档here

答案 8 :(得分:1)

简化Jim answer并提高了效果。

public class BigIntSqRoot {
    private static BigInteger two = BigInteger.valueOf(2L);

    public static BigInteger bigIntSqRootFloor(BigInteger x)
            throws IllegalArgumentException {
        if (checkTrivial(x)) {
            return x;
        }
        if (x.bitLength() < 64) { // Can be cast to long
            double sqrt = Math.sqrt(x.longValue());
            return BigInteger.valueOf(Math.round(sqrt));
        }
        // starting with y = x / 2 avoids magnitude issues with x squared
        BigInteger y = x.divide(two);
        BigInteger value = x.divide(y);
        while (y.compareTo(value) > 0) {
            y = value.add(y).divide(two);
            value = x.divide(y);
        }
        return y;
    }

    public static BigInteger bigIntSqRootCeil(BigInteger x)
            throws IllegalArgumentException {
        BigInteger y = bigIntSqRootFloor(x);
        if (x.compareTo(y.multiply(y)) == 0) {
            return y;
        }
        return y.add(BigInteger.ONE);
    }

    private static boolean checkTrivial(BigInteger x) {
        if (x == null) {
            throw new NullPointerException("x can't be null");
        }
        if (x.compareTo(BigInteger.ZERO) < 0) {
            throw new IllegalArgumentException("Negative argument.");
        }

        // square roots of 0 and 1 are trivial and
        // y == 0 will cause a divide-by-zero exception
        if (x.equals(BigInteger.ZERO) || x.equals(BigInteger.ONE)) {
            return true;
        } // end if
        return false;
    }
}

答案 9 :(得分:1)

更新(23July2018):这项技术无法适用于更大的值。在下面发布了基于二进制搜索的不同技术。

我正在研究因子分解并最终写出来。

package com.example.so.math;

import java.math.BigInteger;

/**
 * 
 * <p>https://stackoverflow.com/questions/4407839/how-can-i-find-the-square-root-of-a-java-biginteger</p>
 * @author Ravindra
 * @since 06August2017
 *
 */
public class BigIntegerSquareRoot {

    public static void main(String[] args) {

        int[] values = {5,11,25,31,36,42,49,64,100,121};

        for (int i : values) {
            BigInteger result = handleSquareRoot(BigInteger.valueOf(i));
            System.out.println(i+":"+result);
        }


    }


    private static BigInteger handleSquareRoot(BigInteger modulus) {

        int MAX_LOOP_COUNT = 100; // arbitrary for now.. but needs to be proportional to sqrt(modulus)

        BigInteger result = null;

        if( modulus.equals(BigInteger.ONE) ) {
            result = BigInteger.ONE;
            return result;
        }

        for(int i=2;i<MAX_LOOP_COUNT && i<modulus.intValue();i++) { // base-values can be list of primes...
            //System.out.println("i"+i);
            BigInteger bigIntegerBaseTemp = BigInteger.valueOf(i);
            BigInteger bigIntegerRemainderTemp = bigIntegerBaseTemp.modPow(modulus, modulus);
            BigInteger bigIntegerRemainderSubtractedByBase = bigIntegerRemainderTemp.subtract(bigIntegerBaseTemp);
            BigInteger bigIntegerRemainderSubtractedByBaseFinal = bigIntegerRemainderSubtractedByBase;

            BigInteger resultTemp = null;
            if(bigIntegerRemainderSubtractedByBase.signum() == -1 || bigIntegerRemainderSubtractedByBase.signum() == 1) {

                bigIntegerRemainderSubtractedByBaseFinal = bigIntegerRemainderSubtractedByBase.add(modulus);
                resultTemp = bigIntegerRemainderSubtractedByBaseFinal.gcd(modulus);

            } else if(bigIntegerRemainderSubtractedByBase.signum() == 0) {
                resultTemp = bigIntegerBaseTemp.gcd(modulus);
            }

            if( resultTemp.multiply(resultTemp).equals(modulus) ) {
                System.out.println("Found square root for modulus :"+modulus);
                result = resultTemp;
                break;
            }
        }

        return result;
    }


}

这种方法可以这样形象化:

Powers of Integers Moduluo - N

希望这有帮助!

答案 10 :(得分:1)

    BigDecimal BDtwo = new BigDecimal("2");
    BigDecimal BDtol = new BigDecimal(".000000001");    
private BigDecimal bigIntSQRT(BigDecimal lNew, BigDecimal lOld, BigDecimal n) {
        lNew = lOld.add(n.divide(lOld, 9, BigDecimal.ROUND_FLOOR)).divide(BDtwo, 9, BigDecimal.ROUND_FLOOR);
        if (lOld.subtract(lNew).abs().compareTo(BDtol) == 1) {
            lNew = bigIntSQRT(lNew, lNew, n);
        }
    return lNew;
}

我正在研究这个问题并成功用Java编写了一个递归的平方根查找程序。您可以将 BDtol 更改为您想要的任何内容,但运行速度相当快,并给出了以下示例:

原始编号 146783911423364576743092537299333563769268393112173908757133540102089006265925538868650825438150202201473025

SQRT - &gt; 383123885216472214589586756787577295328224028242477055.000000000

然后确认 146783911423364576743092537299333563769268393112173908757133540102089006265925538868650825438150202201473025.000000000000000000

答案 11 :(得分:1)

这是我找到的最好(也是最短)的工作解决方案

http://faruk.akgul.org/blog/javas-missing-algorithm-biginteger-sqrt/

以下是代码:

  public static BigInteger sqrt(BigInteger n) {
    BigInteger a = BigInteger.ONE;
    BigInteger b = new BigInteger(n.shiftRight(5).add(new BigInteger("8")).toString());
    while(b.compareTo(a) >= 0) {
      BigInteger mid = new BigInteger(a.add(b).shiftRight(1).toString());
      if(mid.multiply(mid).compareTo(n) > 0) b = mid.subtract(BigInteger.ONE);
      else a = mid.add(BigInteger.ONE);
    }
    return a.subtract(BigInteger.ONE);
  }

我已经测试了它并且它正常工作(并且似乎很快)

答案 12 :(得分:0)

C#语言具有与Java类似的语法。我写了这个递归解决方案。

    static BigInteger fsqrt(BigInteger n)
    {
        string sn = n.ToString();
        return guess(n, BigInteger.Parse(sn.Substring(0, sn.Length >> 1)), 0);          
    }
    static BigInteger guess(BigInteger n, BigInteger g, BigInteger last)
    {
        if (last >= g - 1 && last <= g + 1) return g;
        else return guess(n, (g + (n / g)) >> 1, g);
    }

像这样调用这个代码(在Java中我猜它会是“System.out.print”)。

Console.WriteLine(fsqrt(BigInteger.Parse("783648276815623658365871365876257862874628734627835648726")));

答案是: 27993718524262253829858552106

免责声明:我知道此方法不适用于小于10的数字;这是一个BigInteger平方根方法。

这很容易解决。将第一个方法更改为以下方法,为递归部分提供一些呼吸空间。

    static BigInteger fsqrt(BigInteger n)
    {
        if (n > 999)
        {
           string sn = n.ToString();
           return guess(n, BigInteger.Parse(sn.Substring(0, sn.Length >> 1)), 0);
        }
        else return guess(n, n >> 1, 0);            
    }

答案 13 :(得分:0)

您也可以使用二进制搜索来查找x的平方根 你也可以将它乘以例如10 ^ 10,并通过二进制搜索找到一个像m这样的整数,因为m ^ 2

&#13;
&#13;
System.out.println(m.divide(10^5)+"."+m.mod(10^5));
&#13;
&#13;
&#13;

答案 14 :(得分:0)

这是一个不使用BigInteger.multiply或BigInteger.divide的解决方案:

    private static final BigInteger ZERO  = BigInteger.ZERO;
    private static final BigInteger ONE   = BigInteger.ONE;
    private static final BigInteger TWO   = BigInteger.valueOf(2);
    private static final BigInteger THREE = BigInteger.valueOf(3);

    /**
     * This method computes sqrt(n) in O(n.bitLength()) time,
     * and computes it exactly. By "exactly", I mean it returns
     * not only the (floor of the) square root s, but also the
     * remainder r, such that r >= 0, n = s^2 + r, and
     * n < (s + 1)^2.
     *
     * @param n The argument n, as described above.
     *
     * @return An array of two values, where the first element
     *         of the array is s and the second is r, as
     *         described above.
     *
     * @throws IllegalArgumentException if n is not nonnegative.
     */
    public static BigInteger[] sqrt(BigInteger n) {
        if (n == null || n.signum() < 0) {
            throw new IllegalArgumentException();
        }

        int bl = n.bitLength();
        if ((bl & 1) != 0) {
            ++ bl;
        }

        BigInteger s = ZERO;
        BigInteger r = ZERO;

        while (bl >= 2) {
            s = s.shiftLeft(1);

            BigInteger crumb = n.testBit(-- bl)
                                ? (n.testBit(-- bl) ? THREE : TWO)
                                : (n.testBit(-- bl) ? ONE : ZERO);
            r = r.shiftLeft(2).add(crumb);

            BigInteger d = s.shiftLeft(1);
            if (d.compareTo(r) < 0) {
                s = s.add(ONE);
                r = r.subtract(d).subtract(ONE);
            }
        }

        assert r.signum() >= 0;
        assert n.equals(s.multiply(s).add(r));
        assert n.compareTo(s.add(ONE).multiply(s.add(ONE))) < 0;

        return new BigInteger[] {s, r};
    }

答案 15 :(得分:0)

我在上面发布的答案不适用于大量数字(但有趣的是!)。因此,发布了二进制搜索方法来确定平方根的正确性。

package com.example.so.squareroot;

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;

/**
 * <p>https://stackoverflow.com/questions/4407839/how-can-i-find-the-square-root-of-a-java-biginteger</p>
 * <p> Determine square-root of a number or its closest whole number (binary-search-approach) </p>
 * @author Ravindra
 * @since 07-July-2018
 * 
 */
public class BigIntegerSquareRootV2 {

    public static void main(String[] args) {

        List<BigInteger> listOfSquares = new ArrayList<BigInteger>();
        listOfSquares.add(BigInteger.valueOf(5).multiply(BigInteger.valueOf(5)).pow(2));
        listOfSquares.add(BigInteger.valueOf(11).multiply(BigInteger.valueOf(11)).pow(2));
        listOfSquares.add(BigInteger.valueOf(15485863).multiply(BigInteger.valueOf(10000019)).pow(2));
        listOfSquares.add(BigInteger.valueOf(533000401).multiply(BigInteger.valueOf(982451653)).pow(2));
        listOfSquares.add(BigInteger.valueOf(11).multiply(BigInteger.valueOf(23)));
        listOfSquares.add(BigInteger.valueOf(11).multiply(BigInteger.valueOf(23)).pow(2));


        for (BigInteger bigIntegerNumber : listOfSquares) {

            BigInteger squareRoot = calculateSquareRoot(bigIntegerNumber);

            System.out.println("Result :"+bigIntegerNumber+":"+squareRoot);
        }


        System.out.println("*********************************************************************");

        for (BigInteger bigIntegerNumber : listOfSquares) {

            BigInteger squareRoot = determineClosestWholeNumberSquareRoot(bigIntegerNumber);

            System.out.println("Result :"+bigIntegerNumber+":"+squareRoot);
        }

    }


    /*
Result :625:25
Result :14641:121
Result :23981286414105556927200571609:154858924231397
Result :274206311533451346298141971207799609:523647125012112853
Result :253:null
Result :64009:253
     */

    public static BigInteger calculateSquareRoot(BigInteger number) { 

        /*
         * Can be optimized by passing a bean to store the comparison result and avoid having to re-calculate.
         */
        BigInteger squareRootResult = determineClosestWholeNumberSquareRoot(number);
        if( squareRootResult.pow(2).equals(number)) {
            return squareRootResult;
        }

        return null;
    }


    /*
Result :625:25
Result :14641:121
Result :23981286414105556927200571609:154858924231397
Result :274206311533451346298141971207799609:523647125012112853
Result :253:15
Result :64009:253
     */
    private static BigInteger determineClosestWholeNumberSquareRoot(BigInteger number) {

        BigInteger result = null;

        if(number.equals(BigInteger.ONE)) {
            return BigInteger.ONE;
        } else if( number.equals(BigInteger.valueOf(2)) ) {
            return BigInteger.ONE;
        } else if( number.equals(BigInteger.valueOf(3)) ) {
            return BigInteger.ONE;
        } else if( number.equals(BigInteger.valueOf(4)) ) {
            return BigInteger.valueOf(2);
        }

        BigInteger tempBaseLow = BigInteger.valueOf(2);
        BigInteger tempBaseHigh = number.shiftRight(1); // divide by 2

        int loopCount = 11;

        while(true) {

            if( tempBaseHigh.subtract(tempBaseLow).compareTo(BigInteger.valueOf(loopCount)) == -1 ) { // for lower numbers use for-loop
                //System.out.println("Breaking out of while-loop.."); // uncomment-for-debugging
                break;
            }

            BigInteger tempBaseMid = tempBaseHigh.subtract(tempBaseLow).shiftRight(1).add(tempBaseLow); // effectively mid = [(high-low)/2]+low
            BigInteger tempBaseMidSquared = tempBaseMid.pow(2);
            int comparisonResultTemp = tempBaseMidSquared.compareTo(number);


            if(comparisonResultTemp == -1) { // move mid towards higher number
                tempBaseLow = tempBaseMid;
            } else if( comparisonResultTemp == 0 ) { // number is a square ! return the same !
                    return tempBaseMid;
            } else { // move mid towards lower number
                tempBaseHigh = tempBaseMid;
            }

        }

        BigInteger tempBasePrevious = tempBaseLow;
        BigInteger tempBaseCurrent = tempBaseLow;
        for(int i=0;i<(loopCount+1);i++) {
            BigInteger tempBaseSquared = tempBaseCurrent.pow(2);
            //System.out.println("Squared :"+tempBaseSquared); // uncomment-for-debugging
            int comparisonResultTempTwo = tempBaseSquared.compareTo(number);

            if( comparisonResultTempTwo == -1 ) { // move current to previous and increment current...
                tempBasePrevious = tempBaseCurrent;
                tempBaseCurrent = tempBaseCurrent.add(BigInteger.ONE);
            } else if( comparisonResultTempTwo == 0 ) { // is an exact match!
                tempBasePrevious = tempBaseCurrent;
                break;
            } else { // we've identified the point of deviation.. break..
                //System.out.println("breaking out of for-loop for square root..."); // uncomment-for-debugging
                break;
            }
        }

        result = tempBasePrevious;

        //System.out.println("Returning :"+result); // uncomment-for-debugging
        return result;

    }


}

问候 拉文德拉

答案 16 :(得分:0)

我只是到了平方根的整数部分,但你可以修改这个粗略的算法,以达到你想要的更高精度:

  public static void main(String args[]) {
    BigInteger N = new BigInteger(
            "17976931348623159077293051907890247336179769789423065727343008115"
                    + "77326758055056206869853794492129829595855013875371640157101398586"
                    + "47833778606925583497541085196591615128057575940752635007475935288"
                    + "71082364994994077189561705436114947486504671101510156394068052754"
                    + "0071584560878577663743040086340742855278549092581");
    System.out.println(N.toString(10).length());
    String sqrt = "";
    BigInteger divisor = BigInteger.ZERO;
    BigInteger toDivide = BigInteger.ZERO;
    String Nstr = N.toString(10);
    if (Nstr.length() % 2 == 1)
        Nstr = "0" + Nstr;
    for (int digitCount = 0; digitCount < Nstr.length(); digitCount += 2) {
        toDivide = toDivide.multiply(BigInteger.TEN).multiply(
                BigInteger.TEN);
        toDivide = toDivide.add(new BigInteger(Nstr.substring(digitCount,
                digitCount + 2)));
        String div = divisor.toString(10);
        divisor = divisor.add(new BigInteger(
                div.substring(div.length() - 1)));
        int into = tryMax(divisor, toDivide);
        divisor = divisor.multiply(BigInteger.TEN).add(
                BigInteger.valueOf(into));
        toDivide = toDivide.subtract(divisor.multiply(BigInteger
                .valueOf(into)));
        sqrt = sqrt + into;
    }
    System.out.println(String.format("Sqrt(%s) = %s", N, sqrt));
}

private static int tryMax(final BigInteger divisor,
        final BigInteger toDivide) {
    for (int i = 9; i > 0; i--) {
        BigInteger div = divisor.multiply(BigInteger.TEN).add(
                BigInteger.valueOf(i));
        if (div.multiply(BigInteger.valueOf(i)).compareTo(toDivide) <= 0)
            return i;
    }
    return 0;
}

答案 17 :(得分:0)

这是一种易于理解的方法,虽然可能无法获得最佳性能,但可以在不到一秒钟的时间内为单个BigInteger提供解决方案。

result.astype(typing)

答案 18 :(得分:-2)

单线可以完成我认为的工作。

Math.pow(bigInt.doubleValue(), (1/n));